| pseudo_values {MixedPoisson} | R Documentation |
Pseudo values – Expectation-Maximization (EM) algorithm
Description
The function returns the pseudo values t_i defined as the conditional expectation E[\theta_i|k_1,...,k_n],
where k_1,...,k_n are realizations of the count variable N.
Usage
pseudo_values(variable, mixing, lambda, gamma.par, nu, delta, n)
Arguments
variable |
the vector of numbers |
mixing |
the name of mixing distribution – "Gamma", "lognorm", "invGauss" |
lambda |
|
gamma.par |
|
nu |
|
delta |
|
n |
The integer value for the Laguerre quadrature. Default to 100 |
Details
The function calculates the vector of pseudo values t_i=E[\theta_i|k_1,...,k_n] in E-step of EM algorithm. It applies the numerical integration using laguerre.quadrature
in the nominator and the denominator of the formula
The proper parameter \gamma, \nu, \delta should be chosen according to the mixing distribution.
Value
pseudo_values |
pseudo values |
nominator |
nominator in the formula |
denominator |
denominator in the formula |
Author(s)
Alicja Wolny–Dominiak, Michal Trzesiok
Examples
variable=rpois(30,4)
pseudo_values(variable, mixing="Gamma", lambda=4, gamma.par=0.7, n=100)