pdplot {MixSim} | R Documentation |
Parallel Distribution Plot
Description
Constructs a parallel distribution plot for Gaussian finite mixture models.
Usage
pdplot(Pi, Mu, S, file = NULL, Nx = 5, Ny = 5, MaxInt = 1, marg = c(2,1,1,1))
Arguments
Pi |
vector of mixing proportions. |
Mu |
matrix consisting of components' mean vectors (K * p). |
S |
set of components' covariance matrices (p * p * K). |
file |
name of .pdf-file. |
Nx |
number of color levels for smoothing along the x-axis. |
Ny |
number of color levels for smoothing along the y-axis. |
MaxInt |
maximum color intensity. |
marg |
plot margins. |
Details
If 'file' is specified, produced plot will be saved as a .pdf-file.
Author(s)
Volodymyr Melnykov, Wei-Chen Chen, and Ranjan Maitra.
References
Maitra, R. and Melnykov, V. (2010) “Simulating data to study performance of finite mixture modeling and clustering algorithms”, The Journal of Computational and Graphical Statistics, 2:19, 354-376.
Melnykov, V., Chen, W.-C., and Maitra, R. (2012) “MixSim: An R Package for Simulating Data to Study Performance of Clustering Algorithms”, Journal of Statistical Software, 51:12, 1-25.
See Also
MixSim
, overlap
, and simdataset
.
Examples
data("iris", package = "datasets")
p <- ncol(iris) - 1
id <- as.integer(iris[, 5])
K <- max(id)
# estimate mixture parameters
Pi <- prop.table(tabulate(id))
Mu <- t(sapply(1:K, function(k){ colMeans(iris[id == k, -5]) }))
S <- sapply(1:K, function(k){ var(iris[id == k, -5]) })
dim(S) <- c(p, p, K)
pdplot(Pi = Pi, Mu = Mu, S = S)