overlap {MixSim} | R Documentation |
Overlap
Description
Computes misclassification probabilities and pairwise overlaps for finite mixture models with Gaussian components. Overlap is defined as sum of two misclassification probabilities.
Usage
overlap(Pi, Mu, S, eps = 1e-06, lim = 1e06)
Arguments
Pi |
vector of mixing proprtions (length K). |
Mu |
matrix consisting of components' mean vectors (K * p). |
S |
set of components' covariance matrices (p * p * K). |
eps |
error bound for overlap computation. |
lim |
maximum number of integration terms (Davies, 1980). |
Value
OmegaMap |
matrix of misclassification probabilities (K * K); OmegaMap[i,j] is the probability that X coming from the i-th component is classified to the j-th component. |
BarOmega |
value of average overlap. |
MaxOmega |
value of maximum overlap. |
rcMax |
row and column numbers for the pair of components producing maximum overlap 'MaxOmega'. |
Author(s)
Volodymyr Melnykov, Wei-Chen Chen, and Ranjan Maitra.
References
Maitra, R. and Melnykov, V. (2010) “Simulating data to study performance of finite mixture modeling and clustering algorithms”, The Journal of Computational and Graphical Statistics, 2:19, 354-376.
Melnykov, V., Chen, W.-C., and Maitra, R. (2012) “MixSim: An R Package for Simulating Data to Study Performance of Clustering Algorithms”, Journal of Statistical Software, 51:12, 1-25.
Davies, R. (1980) “The distribution of a linear combination of chi-square random variables”, Applied Statistics, 29, 323-333.
See Also
MixSim
, pdplot
, and simdataset
.
Examples
data("iris", package = "datasets")
p <- ncol(iris) - 1
id <- as.integer(iris[, 5])
K <- max(id)
# estimate mixture parameters
Pi <- prop.table(tabulate(id))
Mu <- t(sapply(1:K, function(k){ colMeans(iris[id == k, -5]) }))
S <- sapply(1:K, function(k){ var(iris[id == k, -5]) })
dim(S) <- c(p, p, K)
overlap(Pi = Pi, Mu = Mu, S = S)