plot_intervals {MixSIAR} | R Documentation |
Plot posterior uncertainty intervals from a MixSIAR model
Description
plot_intervals
plots the posterior interval estimates (quantile-based) from the MCMC draws in a MixSIAR model.
Calls bayesplot::mcmc_intervals.
Usage
plot_intervals(
combined,
toplot = "p",
levels = NULL,
groupby = "factor",
savepdf = FALSE,
filename = "post_intervals",
...
)
Arguments
combined |
list, output from |
toplot |
vector, which parameters to plot? Options are similar to
|
levels |
vector if |
groupby |
character, group by "factor" or "source"? I.e. in wolves example, group proportions by Region 1, Region 2, Region 3
( |
savepdf |
|
filename |
character, file name to save results as ( |
... |
additional arguments to pass to bayesplot::mcmc_intervals. For example:
|
See Also
combine_sources
and summary_stat
Examples
## Not run:
# 1. run mantis shrimp example
original <- combine_sources(jags.1, mix, source, alpha,
groups=list(alphworm="alphworm",brittlestar="brittlestar",clam="clam",
crab="crab",fish="fish",snail="snail"))
# 2. combine 6 sources into 2 groups of interest (hard-shelled vs. soft-bodied)
# 'hard' = 'clam' + 'crab' + 'snail' # group 1 = hard-shelled prey
# 'soft' = 'alphworm' + 'brittlestar' + 'fish' # group 2 = soft-bodied prey
combined <- combine_sources(jags.1, mix, source, alpha.prior=alpha,
groups=list(hard=c("clam","crab","snail"), soft=c("alphworm","brittlestar","fish")))
plot_intervals(combined,toplot="fac1")
plot_intervals(original,toplot="fac1")
plot_intervals(combined,toplot="fac1",levels=1)
plot_intervals(combined,toplot="fac1",levels=2)
## End(Not run)