| rmatrixt {MixMatrix} | R Documentation | 
Distribution functions for the matrix variate t distribution.
Description
Density and random generation for the matrix variate t distribution.
Usage
rmatrixt(
  n,
  df,
  mean,
  L = diag(dim(as.matrix(mean))[1]),
  R = diag(dim(as.matrix(mean))[2]),
  U = L %*% t(L),
  V = t(R) %*% R,
  list = FALSE,
  array = NULL,
  force = FALSE
)
dmatrixt(
  x,
  df,
  mean = matrix(0, p, n),
  L = diag(p),
  R = diag(n),
  U = L %*% t(L),
  V = t(R) %*% R,
  log = FALSE
)
Arguments
| n | number of observations for generation | 
| df | degrees of freedom ( | 
| mean | 
 | 
| L | 
 | 
| R | 
 | 
| U | 
 | 
| V | 
 | 
| list | Defaults to  | 
| array | If  | 
| force | In  | 
| x | quantile for density | 
| log | logical; in  | 
Details
The matrix t-distribution is parameterized slightly
differently from the univariate and multivariate t-distributions
- the variance is scaled by a factor of - 1/df. In this parameterization, the variance for a- 1 \times 1matrix variate- t-distributed random variable with identity variance matrices is- 1/(df-2)instead of- df/(df-2). A Central Limit Theorem for the matrix variate- Tis then that as- dfgoes to infinity,- MVT(0, df, I_p, df*I_q)converges to- MVN(0,I_p,I_q).
Value
rmatrixt returns either a list of n
p \times q  matrices or a
p \times q \times n
array.
dmatrixt returns the density at x.
References
Gupta, Arjun K, and Daya K Nagar. 1999. Matrix Variate Distributions. Vol. 104. CRC Press. ISBN:978-1584880462
Dickey, James M. 1967. “Matricvariate Generalizations of the Multivariate t Distribution and the Inverted Multivariate t Distribution.” Ann. Math. Statist. 38 (2): 511–18. doi: 10.1214/aoms/1177698967
See Also
rmatrixnorm(),
rmatrixinvt(),rt() and
stats::Distributions().
Examples
set.seed(20180202)
# random matrix with df = 10 and the given mean and L matrix
rmatrixt(
  n = 1, df = 10, mean = matrix(c(100, 0, -100, 0, 25, -1000), nrow = 2),
  L = matrix(c(2, 1, 0, .1), nrow = 2), list = FALSE
)
# comparing 1-D distribution of t to matrix
summary(rt(n = 100, df = 10))
summary(rmatrixt(n = 100, df = 10, matrix(0)))
# demonstrating equivalence of 1x1 matrix t to usual t
set.seed(20180204)
x <- rmatrixt(n = 1, mean = matrix(0), df = 1)
dt(x, 1)
dmatrixt(x, df = 1)