| rmatrixinvt {MixMatrix} | R Documentation | 
Distribution functions for matrix variate inverted t distributions
Description
Generate random samples from the inverted matrix variate t distribution or compute densities.
Usage
rmatrixinvt(
  n,
  df,
  mean,
  L = diag(dim(as.matrix(mean))[1]),
  R = diag(dim(as.matrix(mean))[2]),
  U = L %*% t(L),
  V = t(R) %*% R,
  list = FALSE,
  array = NULL
)
dmatrixinvt(
  x,
  df,
  mean = matrix(0, p, n),
  L = diag(p),
  R = diag(n),
  U = L %*% t(L),
  V = t(R) %*% R,
  log = FALSE
)
Arguments
| n | number of observations for generation | 
| df | degrees of freedom ( | 
| mean | 
 | 
| L | 
 | 
| R | 
 | 
| U | 
 | 
| V | 
 | 
| list | Defaults to  | 
| array | If  | 
| x | quantile for density | 
| log | logical; in  | 
Value
rmatrixinvt returns either a list of n
p \times q  matrices or
a p \times q \times n  array.
dmatrixinvt returns the density at  x.
References
Gupta, Arjun K, and Daya K Nagar. 1999. Matrix Variate Distributions. Vol. 104. CRC Press. ISBN:978-1584880462
Dickey, James M. 1967. “Matricvariate Generalizations of the Multivariate t Distribution and the Inverted Multivariate t Distribution.” Ann. Math. Statist. 38 (2): 511–18. doi: 10.1214/aoms/1177698967
See Also
rmatrixnorm(), rmatrixt(),
and stats::Distributions().
Examples
# an example of drawing from the distribution and computing the density.
A <- rmatrixinvt(n = 2, df = 10, diag(4))
dmatrixinvt(A[, , 1], df = 10, mean = diag(4))