Quantification of Mitochondrial DNA Heteroplasmy


[Up] [Top]

Documentation for package ‘MitoHEAR’ version 0.1.0

Help Pages

choose_features_clustering choose_features_clustering
clustering_angular_distance clustering_angular_distance
detect_insertion detect_insertion
dpt_test dpt_test
filter_bases filter_bases
get_distribution get_distribution
get_heteroplasmy get_heteroplasmy
get_raw_counts_allele get_raw_counts_allele
get_wilcox_test get_wilcox_test
plot_allele_frequency plot_allele_frequency
plot_base_coverage plot_base_coverage
plot_batch plot_batch
plot_cells_coverage plot_cells_coverage
plot_condition plot_condition
plot_coordinate_cluster plot_coordinate_cluster
plot_coordinate_heteroplasmy plot_coordinate_heteroplasmy
plot_correlation_bases plot_correlation_bases
plot_distance_matrix plot_distance_matrix
plot_distribution plot_distribution
plot_dpt plot_dpt
plot_genome_coverage plot_genome_coverage
plot_heatmap plot_heatmap
plot_heteroplasmy plot_heteroplasmy
plot_heteroplasmy_variability plot_heteroplasmy_variability
plot_spider_chart plot_spider_chart
vi_comparison vi_comparison We compute the variation of information (VI) between the partition provided by _new_classification_ and _old_classification_. The VI between a random partitions (obtained with re-shuffle from original labels in _old_classification_) and _old_classification_ is also computed. A distribution of VI values from random partitions is built. Finally, from the comparison with this distribution, an empirical p value is given to the VI of the unsupervised cluster analysis.