first.step {MissCP} | R Documentation |
first.step
Description
Perform the block fused lasso with thresholding to detect candidate break points.
Usage
first.step(
data_y,
data_x,
lambda1,
lambda2,
max.iteration = max.iteration,
tol = tol,
blocks,
cv.index,
fixed_index = NULL,
nonfixed_index = NULL
)
Arguments
data_y |
input data matrix Y, with each column representing the time series component |
data_x |
input data matrix X |
lambda1 |
tuning parmaeter lambda_1 for fused lasso |
lambda2 |
tuning parmaeter lambda_2 for fused lasso |
max.iteration |
max number of iteration for the fused lasso |
tol |
tolerance for the fused lasso |
blocks |
the blocks |
cv.index |
the index of time points for cross-validation |
fixed_index |
index for linear regression model with only partial compoenents change. |
nonfixed_index |
index for linear regression model with only partial compoenents change. |
Value
A list object, which contains the followings
- jump.l2
estimated jump size in L2 norm
- jump.l1
estimated jump size in L1 norm
- pts.list
estimated change points in the first step
- beta.full
estimated parameters in the first step
[Package MissCP version 0.1.0 Index]