ranking {MiSPU} | R Documentation |
ranking the OTUs
Description
Ranking the importance of each taxa.
Usage
ranking(y, X, tree, cov = NULL,gamma,g.taxon.index,model = "binomial")
Arguments
y |
Outcome of interest. It can be a disease indicator; =0 for controls, =1 for cases. Or it can be a quantitative trait. A vector with length n (number of observations). |
X |
OTU count table, row - n sample, column - q OTU |
tree |
Rooted phylogenetic tree of R class “phylo” |
cov |
Covariates. A matrix with dimension n by p (n :number of observation, p : number of covariates). |
gamma |
The best gamma selected by aMiSPU test. |
g.taxon.index |
g.taxon.index = 1 stands for weigted generalized taxon proportion; otherwise means unweighted generalized taxon proportion. |
model |
Use "gaussian" for a quantitative trait, and use "binomial" for a binary trait. |
Value
A matrix containing the ranking score, the higher the more important.
Author(s)
Chong Wu
References
Chong, W., Pan, W. (2015) An Adaptive Association Test for Microbiome Data, submitted.
Examples
data(throat.otu.tab)
data(throat.tree)
data(throat.meta)
Y.tmp =throat.meta[,3]
Y = rep(0,dim(throat.meta)[1])
Y[Y.tmp=="Smoker"] = 1
cov.tmp = throat.meta[,c(10,12)]
cov = matrix(1,dim(throat.meta)[1],2)
cov[cov.tmp[,1]== "None",1] = 0
cov[cov.tmp[,2]== "Male",2] = 0
start.time = proc.time()
X = as.matrix(throat.otu.tab)
#out = MiSPU(Y,X, throat.tree,cov,model = "binomial", pow = c(2:8, Inf), n.perm = 1000)
out = ranking(Y,X, throat.tree,cov,gamma = 2, g.taxon.index =1)