Dirichlet {MiSPU}R Documentation

The Dirichlet Distribution

Description

Density function and random number generation for the Dirichlet distribution

Usage

rdirichlet(n, alpha)

Arguments

n

number of random observations to draw

alpha

the Dirichlet distribution's parameters. Can be a vector (one set of parameters for all observations) or a matrix (a different set of parameters for each observation), see “Details”

Details

The Dirichlet distribution is a multidimensional generalization of the Beta distribution where each dimension is governed by an \alpha-parameter. Formally this is

% \mathcal{D}(\alpha_i)=\left[\left.\Gamma(\sum_{i}\alpha_i)\right/\prod_i\Gamma(\alpha_i)\right]\prod_{i}y_i^{\alpha_i-1}%

Usually, alpha is a vector thus the same parameters will be used for all observations. If alpha is a matrix, a complete set of \alpha-parameters must be supplied for each observation.

Value

returns a matrix with random numbers according to the supplied alpha vector or matrix.

Author(s)

Chong Wu

Examples

X1 <- rdirichlet(100, c(5, 5, 10))
X1

[Package MiSPU version 1.0 Index]