Weighted Metrics and Performance Measures for Machine Learning


[Up] [Top]

Documentation for package ‘MetricsWeighted’ version 1.0.3

Help Pages

accuracy Classification Metrics
AUC Classification Metrics
classification Classification Metrics
classification_error Classification Metrics
deviance_bernoulli Classification Metrics
deviance_gamma Regression Metrics
deviance_normal Regression Metrics
deviance_poisson Regression Metrics
deviance_tweedie Regression Metrics
elementary_score Elementary Scoring Function for Expectiles and Quantiles
elementary_score_expectile Elementary Scoring Function for Expectiles and Quantiles
elementary_score_quantile Elementary Scoring Function for Expectiles and Quantiles
f1_score Classification Metrics
gini_coefficient Classification Metrics
logLoss Classification Metrics
mae Regression Metrics
mape Regression Metrics
medae Regression Metrics
mse Regression Metrics
multi_metric Multiple Metrics
murphy_diagram Murphy diagram
performance Performance
precision Classification Metrics
prop_within Regression Metrics
recall Classification Metrics
regression Regression Metrics
rmse Regression Metrics
rsquared Generalized R-Squared
r_squared Generalized R-Squared
r_squared_bernoulli Generalized R-Squared
r_squared_gamma Generalized R-Squared
r_squared_poisson Generalized R-Squared
weighted_cor Weighted Pearson Correlation
weighted_mean Weighted Mean
weighted_median Weighted Median
weighted_quantile Weighted Quantiles
weighted_var Weighted Variance