Evaluation Metrics for Machine Learning


[Up] [Top]

Documentation for package ‘Metrics’ version 0.1.4

Help Pages

accuracy Accuracy
ae Absolute Error
ape Absolute Percent Error
apk Average Precision at k
auc Area under the ROC curve (AUC)
bias Bias
ce Classification Error
f1 F1 Score
fbeta_score F-beta Score
ll Log Loss
logLoss Mean Log Loss
mae Mean Absolute Error
mape Mean Absolute Percent Error
mapk Mean Average Precision at k
mase Mean Absolute Scaled Error
mdae Median Absolute Error
MeanQuadraticWeightedKappa Mean Quadratic Weighted Kappa
mse Mean Squared Error
msle Mean Squared Log Error
params_binary Inherit Documentation for Binary Classification Metrics
params_classification Inherit Documentation for Classification Metrics
params_regression Inherit Documentation for Regression Metrics
percent_bias Percent Bias
precision Precision
rae Relative Absolute Error
recall Recall
rmse Root Mean Squared Error
rmsle Root Mean Squared Log Error
rrse Root Relative Squared Error
rse Relative Squared Error
ScoreQuadraticWeightedKappa Quadratic Weighted Kappa
se Squared Error
sle Squared Log Error
smape Symmetric Mean Absolute Percentage Error
sse Sum of Squared Errors