BA.est {MethComp} | R Documentation |
Bias and variance components for a Bland-Altman plot.
Description
A variance component model is fitted to method comparison data with replicate measurements in each method by item stratum. The purpose is to simplify the construction of a correct Bland-Altman-plot when replicate measurements are available, and to give the REML-estimates of the relevant variance components.
Usage
BA.est(
data,
linked = TRUE,
IxR = has.repl(data),
MxI = has.repl(data),
corMxI = FALSE,
varMxI = TRUE,
IxR.pr = FALSE,
bias = TRUE,
alpha = 0.05,
Transform = NULL,
trans.tol = 1e-06,
random.raters = FALSE,
lmecontrol = lmeControl(msMaxIter = 300),
weightfunction = c("mean", "median")
)
Arguments
data |
A |
linked |
Logical. Are replicates linked within item across methods? |
IxR |
Logical. Should an item by repl interaction be included in the
model. This is needed when the replicates are linked within item across
methods, so it is just another name for the |
MxI |
Logical. Should the method by item interaction (matrix effect) be included in the model. |
corMxI |
Logical. Should the method by item interaction allow coorelated effects within item. Ignored if only two methods are compared. |
varMxI |
Logical. Should the method by item interaction have a variance that varies between methods. Ignored if only two methods are compared. |
IxR.pr |
Logical. Should the item by repl interaction variation be included in the prediction standard deviation? |
bias |
Logical. Should a systematic bias between methods be estimated?
If |
alpha |
Numerical. Significance level. By default the value 2 is used
when computing prediction intervals, otherwise the
|
Transform |
Transformation applied to data ( |
trans.tol |
Numerical. The tolerance used to check whether the supplied transformation and its inverse combine to the identity. |
random.raters |
Logical. Should methods/raters be considered as random.
Defaults to |
lmecontrol |
A list of control parameters passed on to |
weightfunction |
Function to weigh variance components for random
raters. Defaults to |
Details
The model fitted is:
y=\alpha_m + \mu_i + c_{mi} + a_{ir} + e_{mir},
\quad
\mathrm{var}(c_{mi})=\tau_m^2,
\quad
\mathrm{var}(a_{ir})=\omega^2,
\quad
\mathrm{var}(e_{mir})=\sigma_m^2,
We can only fit separate variances
for the \tau s
if more than two methods are compared (i.e.
nM
> 2), hence varMxI is ignored when nM
==2.
The function VC.est
is the workhorse; BA.est
just calls it.
VC.est
figures out which model to fit by lme
, extracts results
and returns estimates. VC.est
is also used as part of the fitting
algorithm in AltReg
, where each iteration step requires fit of
this model. The function VC.est
is actually just a wrapper for the
functions VC.est.fixed
that handles the case with fixed methods
(usually 2 or three) i.e. the classical method comparison problem, and
VC.est.random
that handles the situation where "methods" are merely a
random sample of raters from some population of raters; and therefore are
regarded as random.
Value
BA.est
returns an object of class
c("MethComp","BA.est")
, a list with four elements Conv
,
VarComp
, LoA
, RepCoef
; VC.est
returns
(invisibly!) a list with elements Bias
, VarComp
, Mu
,
RanEff
. These list components are:
Conv |
3-dimensional array
with dimensions "To", "From" and unnamed. The first two dimensions have the
methods compared as levels, the last one
Where "To" and "From" take the same value the value of the "sd" component is
|
VarComp |
A matrix of variance components (on the SD scale) with methods as rows and variance components "IxR", "MxI" and "res" as columns. |
LoA |
Four-column matrix with mean difference, lower and upper limit of agreement and prediction SD. Each row in the matrix represents a pair of methods. |
RepCoef |
Two-column matrix of repeatability SDs and
repeatability coefficients. The SDs are the standard deviation of the
difference between two measurements by the same method on the item under
identical circumstances; the repeatability coefficient the numerical extent
of the prediction interval for this difference, i.e.
|
Mu |
Estimates of the item-specific parameters. |
RanEff |
Estimates of the random effects
from the model (BLUPS). This is a (possibly empty) list with possible
elements named |
The returned object has an attribute,
Transform
with the transformation applied to data before analysis,
and its inverse — see choose.trans
.
Author(s)
Bendix Carstensen
References
Carstensen, Simpson & Gurrin: Statistical models for assessing agreement in method comparison studies with replicate measurements, The International Journal of Biostatistics: Vol. 4 : Iss. 1, Article 16. http://www.bepress.com/ijb/vol4/iss1/16.
See Also
Examples
data( ox )
ox <- Meth( ox )
summary( ox )
BA.est( ox )
BA.est( ox, linked=FALSE )
BA.est( ox, linked=TRUE, Transform="pctlogit" )
## Not run:
data( sbp )
BA.est( sbp )
BA.est( sbp, linked=FALSE )
# Check what you get from VC.est
str( VC.est( sbp ) )
## End(Not run)