PlotMetabolitePCA {MetabolomicsBasics} | R Documentation |
PlotMetabolitePCA.
Description
PlotMetabolitePCA
will show PC1 and PC2 of a pcaMethods
object and generate a flexible plot.
Usage
PlotMetabolitePCA(
pca_res = NULL,
sam = NULL,
g = NULL,
medsd = FALSE,
text.col = "ID",
legend.x = "bottomleft",
comm = NULL
)
Arguments
pca_res |
A pcaRes object from the pcaMethods package. |
sam |
Sample table including columns 'cols', 'pchs' (for data point color and shape) and 'ID' (to label data points) 'Group' (to split cols for legend) 'MP' (to adjust point size). |
g |
Can be a factor vector of length=nrow(sam) and will influence legend and 'medsd'. |
medsd |
Calculate mean and sd for groups and overlay PCA plot with this information. |
text.col |
Data points may be overlaid by textual information, e.g. sample ID and 'text.col' specifies the column name of 'sam' to use for this purpose. |
legend.x |
Position of a legend or NULL to omit it. |
comm |
Will print commentary text to the bottom right of the plot (can be a character vector). |
Details
See examples.
Value
A vector fo similar length as input but with various name components removed.
Examples
# load raw data and sample description
raw <- MetabolomicsBasics::raw
sam <- MetabolomicsBasics::sam
# calculate pca Result using pcaMethods and plot
pca_res <- pcaMethods::pca(raw, method = "rnipals", scale = c("none", "pareto", "uv")[2])
PlotMetabolitePCA(pca_res = pca_res, sam = sam, g = sam$GT)
# plot without legend and Group means instead
PlotMetabolitePCA(
pca_res = pca_res, sam = sam, g = sam$GT, legend.x = NULL, text.col = NULL,
medsd = TRUE, comm = LETTERS[1:4]
)
# readjust symbols before plotting
sam$Group <- interaction(sam$Origin, sam$Class, sep = "_")
sam[, c("cols", "pchs")] <- AdjustSymbols(cols = sam$Group, pchs = sam$Group)
PlotMetabolitePCA(pca_res = pca_res, sam = sam, g = sam$Group)