spom {MetaLandSim}R Documentation

Stochastic Patch Occupancy Model

Description

This function predicts the occupancy status of each patch in a landscape in the time step t+1, based on the occupancy information on time step t.

Usage

spom(sp, kern, conn, colnz, ext, param_df, 
     beta1 = NULL, b = 1, c1 = NULL, c2 = NULL, 
     z = NULL, R = NULL, succ="none", max_age=1)

Arguments

sp

Landscape with species occupancy, object of class 'metapopulation'.

kern

'op1' or 'op2'. Dispersal kernel. See details.

conn

'op1' or 'op2'. Connectivity function. See details.

colnz

'op1', 'op2' or 'op3'. Colonization function. See details.

ext

'op1', 'op2' or 'op3'. Extinction function. See details.

param_df

Parameter data frame delivered by parameter.estimate, including:

  • alpha - Parameter relating extinction with distance.

  • y - Parameter y in the colonization probability.

  • e - Parameter defining the extinction probability in a patch of unit area.

  • x - Parameter scaling extinction risk with patch area.

beta1

Parameter affecting long distance dispersal probability (if the Kern='op2').

b

Parameter scaling emigration with patch area (if conn='op1' or 'op2'). By default set to 1.

c1

Parameter scaling immigration with the focal patch area (if conn='op2').

c2

Parameter c in the option 3 of the colonization probability (if colnz='op3').

z

Parameter giving the strength of the Allee effect (if colnz='op3').

R

Parameter giving the strength of the Rescue effect (if ext='op3').

succ

Set the preference of the species for patch successional stage: 'none', 'early', 'mid' and 'late'.

max_age

Default value set to 1. This argument should not be changed by the user. It is used only when the function runs inside others.

Details

In order to visualize which parameter combination is valid for each option, please refer to the following table (alpha, x, y and e are delivered by parameter.estimate, as a data frame):

parameter kern_1 kern_2 conn_1 conn_2 colnz_1 colnz_2 colnz_3 ext_1 ext_2 ext_3
alpha x x
x x x x
y x x
e x x x
beta1 x
b x x
c1 x
c2 x
z x
R x

A Stochastic Patch Occupancy Model (SPOM) is a type of model which models the occupancy status of the species on habitat patches as a Markov chain (Moilanen, 2004). These models are a good compromise between capturing sufficient biological detail and being easy to parametrize with occupancy data. With SPOMs it is possible to predict the probability of extinction or colonization of every patch in a landscape, given the current occupancy state of all the patches (Etienne et al. 2004).

Dispersal Kernel

Option 1 (Hanski, 1994 and 1999)

D(D_{ij},\alpha) = exp(-\alpha.d_{ij})

Option 2 (Shaw, 1995)

D(D_{ij},\alpha,\beta) = \frac{1}{1+\alpha.d_{ij}^\beta}

where dij is the distance between patches i and j.

Connectivity

Option 1 (Moilanen, 2004)

S_i=\sum pj.D(d_{ij},\alpha).A_j^b

Option 2 (Moilanen and Nieminen, 2002)

S_i=A_i^c \sum p_j.D(d_{ij},\alpha).A_j^b

where Ai and Aj are the areas of patches i(focal patch) and j(other patches), respectively; dij is the distance between patches i and j and pj is the occupation status (0/1) of patch j

Colonization function

Option 1 (Hanski, 1994, 1999)

C_i=\frac{S_i^2}{S_i^2+y^2}

Option 2 (Moilanen, 2004)

C_i=1-exp(-y.S_i)

Option 3 (Ovaskainen, 2002)

C_i=\frac{S_i^z}{S_i^z+\frac{1}{c}}

where Si is connectivity.

Extinction function

Option 1 (Hanski, 1994, 1999)

E_i=min(1,\frac{e}{A_i^x})

Option 2 (Hanski and Ovaskainen, 2000 and Ovaskainen and Hanski, 2002)

E_i=1-exp(\frac{-e}{A_i^x})

Option 3 (Ovaskainen, 2002)

E_i=min[1,\frac{e}{A_i^x}.(1-C_i)^R]

where Ai is the area of the focal patch and Ci is the colonization probability of the focal patch.

Here, parameter x defines de degree to which the extinction rate is sensitive to the patch area. If x>1, with the increase of Ai the extinction rate rapidly approximates zero. The populations in the larger patches becomes almost impossible to extinguish. However, if x is small the extinction rate decreases slower with increasing Ai.

Value

Delivers a list similar to the class 'metapopulation' but with two additional columns in the data frame nodes.characteristics: 'species2'(which is the occupation in the next time step) and turn (turnover between occupancies).

Author(s)

Frederico Mestre and Fernando Canovas

References

Etienne, R. S., ter Braak, C. J., and Vos, C. C. (2004). Application of stochastic patch occupancy models to real metapopulations. In Hanski, I. and Gaggiotti, O.E. (Eds.) Ecology, Genetics, and Evolution of Metapopulations. Elsevier Academic Press. 696 pp.

Hanski, I. (1994). A practical model of metapopulation dynamics. Journal of Animal Ecology, 63: 151-162.

Hanski, I. (1999). Metapopulation Ecology. Oxford University Press. 313 pp.

Hanski, I., Alho, J., and Moilanen, A. (2000). Estimating the parameters of survival and migration of individuals in metapopulations. Ecology, 81(1), 239-251.

Hanski, I., and Ovaskainen, O. (2000). The metapopulation capacity of a fragmented landscape. Nature, 404: 755-758.

Moilanen, A. (2004). SPOMSIM: software for stochastic patch occupancy models of metapopulation dynamics. Ecological Modelling, 179(4), 533-550.

Moilanen, A., and Nieminen, M. (2002). Simple connectivity measures in spatial ecology. Ecology, 83(4): 1131-1145.

Nathan, R., Klein, E., Robledo-Arnuncio, J.J. and Revilla, E. (2012). Dispersal kernels: review. in Clobert, J., Baguette, M., Benton, T. and Bullock, J.M. (Eds.) Dispersal Ecology and Evolution. Oxford University Press. Oxford, UK. 462 pp.

Ovaskainen, O. (2002). The effective size of a metapopulation living in a heterogeneous patch network. The American Naturalist: 160(5), 612-628.

Ovaskainen, O. and Hanski, I. (2001). Spatially structured metapopulation models: global and local assessment of metapopulation capacity. Theoretical Population Biology, 60(4), 281-302.

Ovaskainen, O., and Hanski, I. (2002). Transient dynamics in metapopulation response to perturbation. Theoretical Population Biology, 61(3): 285-295.

Ovaskainen, O. and Hanski, I. (2004). Metapopulation dynamics in highly fragmented landscapes. In Hanski, I. & Gaggiotti, O.E. (Eds.) Ecology, Genetics, and Evolution of Metapopulations. Elsevier Academic Press. 696 pp.

Shaw, M.W., (1995). Simulation of population expansion and spatial pattern when individual dispersal distributions do not decline exponentially with distance. Proc. R. Soc. London B: 259, 243-248.

See Also

species.graph, simulate_graph, iterate.graph

Examples


data(occ.landscape)
data(param1)

#Simulating the occupation in the next time step:

landscape2 <- spom(sp=occ.landscape,
			kern="op1",
			conn="op1",
			colnz="op1",
			ext="op1",
			param_df=param1,
			beta1=NULL,
			b=1,
			c1=NULL,
			c2=NULL,
			z=NULL,
			R=NULL,
			succ="none"
			)

#The output has two new columns in the data frame nodes.characteristics: species2 
#(occupation in the next time step) and turn (turnover - change of occupation status, 
#1 if changed and 0 if not).:

head(landscape2)

#         x         y      areas    radius cluster    colour nneighbour
#1 718.5011 228.47190 0.05741039 13.518245       1 #FF0000FF   91.80452
#2 494.3624  73.29165 0.08755563 16.694257       1 #FF0000FF   98.98432
#3 809.2326 245.90046 0.09384384 17.283351       1 #FF0000FF  166.68205
#4 638.8057 149.35122 0.08858989 16.792569       1 #FF0000FF   82.60306
#5 874.2010  19.78104 0.03621793 10.737097       1 #FF0000FF   92.26625
#6 605.3937  70.34944 0.03066018  9.878987       1 #FF0000FF  131.22261
#  ID species species2 turn
#1  1       1        1    0
#2  2       0        1    1
#3  3       1        1    0
#4  4       0        0    0
#5  5       0        1    1
#6  6       1        1    0


[Package MetaLandSim version 2.0.0 Index]