get_var_EB {MetaIntegration} | R Documentation |
Using simulation to obtain the asymptotic variance-covariance matrix of gamma_EB, package corpcor and MASS are required
Description
Using simulation to obtain the asymptotic variance-covariance matrix of gamma_EB, package corpcor and MASS are required
Usage
get_var_EB(k, q, gamma.CML, gamma.I, asy.CML, seed = 2333, nsim = 2000)
Arguments
k |
number of external models |
q |
total number of covariates (X,B) including the intercept (i.e. q=ncol(X)+ncol(B)+1) |
gamma.CML |
stack all k CML estimates in order, i.e. c(gamma.CML1,...,gamma.CMLk) |
gamma.I |
direct regression estimates using the internal data only |
asy.CML |
a list of the estimated asymtotic variance-covariance matrix of c(gamma_CML, gamma_I) from the output of function asympVar_LinReg() or asympVar_LogReg() |
seed |
specify seed for simulation |
nsim |
number of simulation, default nsim=2,000 |
Value
a list with: Var(gamma_EB), Cov(gamma_EB, gamma_I) and Cov(gamma_EBi, gamma_EBj)
References
Gu, T., Taylor, J.M.G. and Mukherjee, B. (2020). An ensemble meta-prediction framework to integrate multiple regression models into a current study. Manuscript in preparation.
Examples
# Full model: Y|X1, X2, B
# Reduced model 1: Y|X1 of sample size m1
# Reduced model 2: Y|X2 of sample size m2
# (X1, X2, B) follows normal distribution with mean zero, variance one and correlation 0.3
# Y|X1, X2, B follows Bernoulli[expit(-1-0.5*X1-0.5*X2+0.5*B)], where expit(x)=exp(x)/[1+exp(x)]
set.seed(2333)
n = 1000
data.n = data.frame(matrix(ncol = 4, nrow = n))
colnames(data.n) = c('Y', 'X1', 'X2', 'B')
data.n[,c('X1', 'X2', 'B')] = MASS::mvrnorm(n, rep(0,3), diag(0.7,3)+0.3)
data.n$Y = rbinom(n, 1, expit(-1 - 0.5*data.n$X1 - 0.5*data.n$X2 + 0.5*data.n$B))
# Generate the beta estimates from the external reduced model:
# generate a data of size m from the full model first, then fit the reduced regression
# to obtain the beta estiamtes and the corresponsing estimated variance
m = m1 = m2 = 30000
data.m = data.frame(matrix(ncol = 4, nrow = m))
names(data.m) = c('Y', 'X1', 'X2', 'B')
data.m[,c('X1', 'X2', 'B')] = MASS::mvrnorm(m, rep(0,3), diag(0.7,3)+0.3)
data.m$Y = rbinom(m, 1, expit(-1 - 0.5*data.m$X1 - 0.5*data.m$X2 + 0.5*data.m$B))
#fit Y|X to obtain the external beta estimates, save the beta estiamtes and
# the corresponsing estimated variance
fit.E1 = glm(Y ~ X1, data = data.m, family = binomial(link='logit'))
fit.E2 = glm(Y ~ X2, data = data.m, family = binomial(link='logit'))
beta.E1 = coef(fit.E1)
beta.E2 = coef(fit.E2)
names(beta.E1) = c('int', 'X1')
names(beta.E2) = c('int', 'X2')
V.E1 = vcov(fit.E1)
V.E2 = vcov(fit.E2)
#Save all the external model information into lists for later use
betaHatExt_list = list(Ext1 = beta.E1, Ext2 = beta.E2)
CovExt_list = list(Ext1 = V.E1, Ext2 = V.E2)
rho = list(Ext1 = n/m1, Ext2 = n/m2)
#get full model estimate from direct regression using the internal data only
fit.gamma.I = glm(Y ~ X1 + X2 + B, data = data.n, family = binomial(link='logit'))
gamma.I = coef(fit.gamma.I)
#Get CML estimates using internal data and the beta estimates from the external
# model 1 and 2, respectively
gamma.CML1 = fxnCC_LogReg(p=2, q=4, YInt=data.n$Y, XInt=data.n$X1,
BInt=cbind(data.n$X2, data.n$B), betaHatExt=beta.E1, gammaHatInt=gamma.I,
n=nrow(data.n), tol=1e-8, maxIter=400,factor=1)[["gammaHat"]]
gamma.CML2 = fxnCC_LogReg(p=2, q=4, YInt=data.n$Y, XInt=data.n$X2,
BInt=cbind(data.n$X1, data.n$B), betaHatExt=beta.E2, gammaHatInt=gamma.I,
n=nrow(data.n), tol=1e-8, maxIter=400, factor=1)[["gammaHat"]]
#It's important to reorder gamma.CML2 so that it follows the order (X1, X2, X3, B)
# as gamma.I and gamma.CML1
gamma.CML2 = c(gamma.CML2[1], gamma.CML2[3], gamma.CML2[2], gamma.CML2[4])
#Get Variance-covariance matricx of c(gamma.I, gamma.CML1, gamma.CML2)
asy.CML = asympVar_LogReg(k=2, p=2,q=4, YInt=data.n$Y, XInt=data.n[,c('X1','X2')],
BInt=data.n$B, gammaHatInt=gamma.I, betaHatExt_list=betaHatExt_list,
CovExt_list=CovExt_list, rho=rho, ExUncertainty=TRUE)
#Get the empirical Bayes (EB) estimates
gamma.EB1 = get_gamma_EB(gamma.I, gamma.CML1, asy.CML[["asyV.I"]])[["gamma.EB"]]
gamma.EB2 = get_gamma_EB(gamma.I, gamma.CML2, asy.CML[["asyV.I"]])[["gamma.EB"]]
#Get the asymptotic variance of the EB estimates
V.EB = get_var_EB(k=2,
q=4,
gamma.CML=c(gamma.CML1, gamma.CML2),
gamma.I = gamma.I,
asy.CML=asy.CML,
seed=2333,
nsim=2000)
asyV.EB1 = V.EB[['asyV.EB']][[1]] #variance of gamma.EB1
asyV.EB2 = V.EB[['asyV.EB']][[2]] #variance of gamma.EB2
asyCov.EB1.I = V.EB[['asyCov.EB.I']][[1]] #covariance of gamma.EB1 and gamma.I
asyCov.EB2.I = V.EB[['asyCov.EB.I']][[2]] #covariance of gamma.EB2 and gamma.I
asyCov.EB12 = V.EB[['asyCov.EB']][['12']] #covariance of gamma.EB1 and gamma.EB2