MatLDA {MatrixLDA} | R Documentation |
Fits the J
-class penalized matrix-normal model for a single pair of tuning parameters.
Description
A function for fitting the J
-class penalized matrix-normal model based on a single set of tuning parameters (\lambda_1, \lambda_2)
. Returns an object of class "MN", which can be used for prediction using the PredictMN
function.
Usage
MatLDA(X, class, lambda1, lambda2, quiet = TRUE, Xval = NULL,
classval = NULL, k.iter = 100, cov.tol = 1e-05, m.tol = 1e-05,
full.tol = 1e-06)
Arguments
X |
An |
class |
|
lambda1 |
A non-negative tuning parameter for the mean penalty. |
lambda2 |
A non-negative tuning parameter for the Kronecker penalty. |
quiet |
Logical. Should the objective function value be printed at each update? Default is |
Xval |
An |
classval |
|
k.iter |
Maximum number of iterations for full blockwise coordinate descent algorithm. |
cov.tol |
Convergence tolerance for graphical lasso sub-algorithms; passed to |
m.tol |
Convergence tolerance for mean update alternating minimization algorithm. Default is |
full.tol |
Convergence tolerance for full blockwise coordinate descent algorithm; based on decrease in objective function value. Default is |
Value
Returns of list of class "MN", which contains the following elements:
Val |
The misclassification rate on the validation set, if provided. |
Mean |
|
U |
|
V |
|
pi.list |
|
References
Molstad, A. J., and Rothman, A. J. (2018). A penalized likelihood method for classification with matrix-valued predictors. Journal of Computational and Graphical Statistics.
Examples
## Generate realizations of matrix-normal random variables
## set sample size, dimensionality, number of classes,
## and marginal class probabilities
N = 75
N.test = 150
N.val = 75
N.total = N + N.test + N.val
r = 16
p = 16
C = 3
pi.list = rep(1/C, C)
## create class means
M.array = array(0, dim=c(r, p, C))
M.array[3:4, 3:4, 1] = 1
M.array[5:6, 5:6, 2] = .5
M.array[3:4, 3:4, 3] = -2
M.array[5:6, 5:6, 3] = -.5
## create covariance matrices U and V
Uinv = matrix(0, nrow=r, ncol=r)
for (i in 1:r) {
for (j in 1:r) {
Uinv[i,j] = .5^abs(i-j)
}
}
eoU = eigen(Uinv)
Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec,
diag(eoU$val^(1/2))),eoU$vec)
Vinv = matrix(.5, nrow=p, ncol=p)
diag(Vinv) = 1
eoV = eigen(Vinv)
Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec,
diag(eoV$val^(1/2))),eoV$vec)
## generate N.total realizations of matrix-variate normal data
set.seed(10)
dat.array = array(0, dim=c(r,p,N.total))
class.total = numeric(length=N.total)
for(jj in 1:N.total){
class.total[jj] = sample(1:C, 1, prob=pi.list)
dat.array[,,jj] = tcrossprod(crossprod(Uinv.sqrt,
matrix(rnorm(r*p), nrow=r)),
Vinv.sqrt) + M.array[,,class.total[jj]]
}
## store generated data
X = dat.array[,,1:N]
X.val = dat.array[,,(N+1):(N+N.val)]
X.test = dat.array[,,(N+N.val+1):N.total]
class = class.total[1:N]
class.val = class.total[(N+1):(N+N.val)]
class.test = class.total[(N+N.val+1):N.total]
## fit two-dimensional grid of tuning parameters;
## measure classification accuracy on validation set
lambda1 = c(2^seq(-5, 0, by=1))
lambda2 = c(2^seq(-8, -4, by=1))
fit.grid = MatLDA_Grid(X=X, class=class, lambda1=lambda1,
lambda2=lambda2, quiet=TRUE,
Xval=X.val, classval= class.val,
k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6)
## identify minimum misclassification proportion;
## select tuning parameters corresponding to
## smallest model at minimum misclassification proportion
CV.mat = fit.grid$Val.mat
G.mat = fit.grid$G.mat*(CV.mat==min(CV.mat))
ind1 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,2]
ind2 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,1]
out = unique(ind2[which(ind2==max(ind2))])
lambda1.cv = lambda1[out]
out2 = unique(max(ind1[ind2==out]))
lambda2.cv = lambda2[out2]
## refit model with sinlge tuning parameter pair
out = MatLDA(X=X, class=class, lambda1=lambda1.cv,
lambda2=lambda2.cv, quiet=FALSE,
Xval=X.test, classval= class.test,
k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6)
## print misclassification proportion on test set
out$Val
## print images of estimated mean differences
dev.new(width=10, height=3)
par(mfrow=c(1,3))
image(t(abs(out$M[,,1] - out$M[,,2]))[,r:1],
main=expression(paste("|", hat(mu)[1], "-", hat(mu)[2], "|")),
col = grey(seq(1, 0, length = 100)))
image(t(abs(out$M[,,1] - out$M[,,3]))[,r:1],
main=expression(paste("|", hat(mu)[1], "-", hat(mu)[3], "|")),
col = grey(seq(1, 0, length = 100)))
image(t(abs(out$M[,,2] - out$M[,,3]))[,r:1],
main=expression(paste("|", hat(mu)[2], "-", hat(mu)[3], "|")),
col = grey(seq(1, 0, length = 100)))