r1 {MatrixCorrelation} | R Documentation |
Correlational Measures for Matrices
Description
Matrix similarity as described by Ramsey et al. (1984).
Usage
r1(X1, X2, center = TRUE, impute = FALSE)
r2(
X1,
X2,
center = TRUE,
impute = FALSE,
impute_par = list(max_iter = 20, tol = 10^-5)
)
r3(
X1,
X2,
center = TRUE,
impute = FALSE,
impute_par = list(max_iter = 20, tol = 10^-5)
)
r4(
X1,
X2,
center = TRUE,
impute = FALSE,
impute_par = list(max_iter = 20, tol = 10^-5)
)
GCD(
X1,
X2,
ncomp1 = min(dim(X1)),
ncomp2 = min(dim(X2)),
center = TRUE,
impute = FALSE,
impute_par = list(max_iter = 20, tol = 10^-5)
)
Arguments
X1 |
first |
X2 |
second |
center |
|
impute |
|
impute_par |
named |
ncomp1 |
(GCD) number of subspace components from the first |
ncomp2 |
(GCD) number of subspace components from the second |
Details
Details can be found in Ramsey's paper:
r1: inner product correlation
r2: orientation-independent inner product correlation
r3: spectra-independent inner product correlations (including orientation)
r4: Spectra-Independent inner product Correlations
GCD: Yanai's Generalized Coefficient of Determination (GCD) Measure. To reproduce the original GCD, use all components. When
X1
andX2
are dummy variables, GCD is proportional with Pillai's criterion: tr(W^-1(B+W)).
Value
A single value measuring the similarity of two matrices.
Author(s)
Kristian Hovde Liland
References
Ramsay, JO; Berg, JT; Styan, GPH; 1984. "Matrix Correlation". Psychometrica 49(3): 403-423.
See Also
SMI
, RV
(RV2/RVadj), Rozeboom
, Coxhead
,
allCorrelations
(matrix correlation comparison), PCAcv (cross-validated PCA)
, PCAimpute (PCA based imputation)
.
Examples
X1 <- matrix(rnorm(100*300),100,300)
usv <- svd(X1)
X2 <- usv$u[,-3] %*% diag(usv$d[-3]) %*% t(usv$v[,-3])
r1(X1,X2)
r2(X1,X2)
r3(X1,X2)
r4(X1,X2)
GCD(X1,X2)
GCD(X1,X2, 5,5)
# Missing data
X1[c(1, 50, 400, 900)] <- NA
X2[c(10, 200, 450, 1200)] <- NA
r1(X1,X2, impute = TRUE)
r2(X1,X2, impute = TRUE)
r3(X1,X2, impute = TRUE)
r4(X1,X2, impute = TRUE)
GCD(X1,X2, impute = TRUE)
GCD(X1,X2, 5,5, impute = TRUE)