theta_vcov {MarkowitzR} | R Documentation |
Compute variance covariance of 'Unified' Second Moment
Description
Computes the variance covariance matrix of sample mean and second moment.
Usage
theta_vcov(X,vcov.func=vcov,fit.intercept=TRUE)
Arguments
X |
an |
vcov.func |
a function which takes an object of class |
fit.intercept |
a boolean controlling whether we add a column of ones to the data, or fit the raw uncentered second moment. For now, must be true when assuming normal returns. |
Details
Given p
-vector x
, the 'unified' sample is the
(p+1)(p+2)/2
vector of 1, x
, and
\mbox{vech}(x x^{\top})
stacked on top
of each other.
Given n
contemporaneous observations of p
-vectors,
stacked as rows in the n \times p
matrix X
,
this function computes the mean and the variance-covariance
matrix of the 'unified' sample.
One may use the default method for computing covariance,
via the vcov
function, or via a 'fancy' estimator,
like sandwich:vcovHAC
, sandwich:vcovHC
, etc.
Value
a list containing the following components:
mu |
a |
Ohat |
the |
n |
the number of rows in |
pp |
the number of assets plus |
Note
Replaces similar functionality from SharpeR package, but with modified API.
Author(s)
Steven E. Pav shabbychef@gmail.com
References
Pav, S. E. "Asymptotic Distribution of the Markowitz Portfolio." 2013 https://arxiv.org/abs/1312.0557
Pav, S. E. "Portfolio Inference with this One Weird Trick." R in Finance, 2014 http://past.rinfinance.com/agenda/2014/talk/StevenPav.pdf
See Also
Examples
X <- matrix(rnorm(1000*3),ncol=3)
Sigmas <- theta_vcov(X)
Sigmas.n <- theta_vcov(X,vcov.func="normal")
Sigmas.n <- theta_vcov(X,fit.intercept=FALSE)
# make it fat tailed:
X <- matrix(rt(1000*3,df=5),ncol=3)
Sigmas <- theta_vcov(X)
if (require(sandwich)) {
Sigmas <- theta_vcov(X,vcov.func=vcovHC)
}
# add some autocorrelation to X
Xf <- filter(X,c(0.2),"recursive")
colnames(Xf) <- colnames(X)
Sigmas <- theta_vcov(Xf)
if (require(sandwich)) {
Sigmas <- theta_vcov(Xf,vcov.func=vcovHAC)
}