| Manifold definitions {ManifoldOptim} | R Documentation | 
Manifold definitions
Description
Get definitions for simple manifolds
Usage
get.stiefel.defn(n, p, numofmani = 1L, ParamSet = 1L)
get.grassmann.defn(n, p, numofmani = 1L, ParamSet = 1L)
get.spd.defn(n, numofmani = 1L, ParamSet = 1L)
get.sphere.defn(n, numofmani = 1L, ParamSet = 1L)
get.euclidean.defn(n, m, numofmani = 1L, ParamSet = 1L)
get.lowrank.defn(n, m, p, numofmani = 1L, ParamSet = 1L)
get.orthgroup.defn(n, numofmani = 1L, ParamSet = 1L)
Arguments
| n | Dimension for manifold object (see Details) | 
| p | Dimension for manifold object (see Details) | 
| numofmani | Multiplicity of this space. For example, use
 | 
| ParamSet | A positive integer indicating a set of properties for the manifold which can be used by the solver. See Huang et al (2016b) for details. | 
| m | Dimension for manifold object (see Details) | 
Details
The functions define manifolds as follows:
- get.stiefel.defn: Stiefel manifold- \{X \in R^{n \times p} : X^T X = I\}
- get.grassmann.defn: Grassmann manifold of- p-dimensional subspaces in- R^n
- get.spd.defn: Manifold of- n \times nsymmetric positive definite matrices
- get.sphere.defn: Manifold of- n-dimensional vectors on the unit sphere
- get.euclidean.defn: Euclidean- R^{n \times m}space
- get.lowrank.defn: Low-rank manifold- \{ X \in R^{n \times m} : \textrm{rank}(X) = p \}
- get.orthgroup.defn: Orthonormal group- \{X \in R^{n \times n} : X^T X = I\}
Value
List containing input arguments and name field denoting the type of manifold
References
Wen Huang, P.A. Absil, K.A. Gallivan, Paul Hand (2016a). "ROPTLIB: an object-oriented C++ library for optimization on Riemannian manifolds." Technical Report FSU16-14, Florida State University.
Wen Huang, Kyle A. Gallivan, and P.A. Absil (2016b). Riemannian Manifold Optimization Library. URL https://www.math.fsu.edu/~whuang2/pdf/USER_MANUAL_for_2016-04-29.pdf
S. Martin, A. Raim, W. Huang, and K. Adragni (2020). "ManifoldOptim: An R Interface to the ROPTLIB Library for Riemannian Manifold Optimization." Journal of Statistical Software, 93(1):1-32.