A B C D E F G I K L M N O P Q R S T U V W X misc
MachineShop-package | MachineShop: Machine Learning Models and Tools |
accuracy | Performance Metrics |
AdaBagModel | Bagging with Classification Trees |
AdaBoostModel | Boosting with Classification Trees |
as.data.frame | Coerce to a Data Frame |
as.data.frame.ModelFrame | Coerce to a Data Frame |
as.data.frame.Resample | Coerce to a Data Frame |
as.data.frame.TabularArray | Coerce to a Data Frame |
as.MLInput | Coerce to an MLInput |
as.MLInput.MLModelFit | Coerce to an MLInput |
as.MLInput.ModelSpecification | Coerce to an MLInput |
as.MLModel | Coerce to an MLModel |
as.MLModel.MLModelFit | Coerce to an MLModel |
as.MLModel.ModelSpecification | Coerce to an MLModel |
as.MLModel.model_spec | Coerce to an MLModel |
auc | Performance Metrics |
BARTMachineModel | Bayesian Additive Regression Trees Model |
BARTModel | Bayesian Additive Regression Trees Model |
BinomialVariate | Discrete Variate Constructors |
BlackBoostModel | Gradient Boosting with Regression Trees |
BootControl | Resampling Controls |
BootOptimismControl | Resampling Controls |
brier | Performance Metrics |
c | Combine MachineShop Objects |
c.Calibration | Combine MachineShop Objects |
c.ConfusionList | Combine MachineShop Objects |
c.ConfusionMatrix | Combine MachineShop Objects |
c.LiftCurve | Combine MachineShop Objects |
c.ListOf | Combine MachineShop Objects |
c.PerformanceCurve | Combine MachineShop Objects |
c.Resample | Combine MachineShop Objects |
C50Model | C5.0 Decision Trees and Rule-Based Model |
calibration | Model Calibration |
case_weights | Extract Case Weights |
CForestModel | Conditional Random Forest Model |
cindex | Performance Metrics |
combine | Combine MachineShop Objects |
confusion | Confusion Matrix |
ConfusionMatrix | Confusion Matrix |
controls | Resampling Controls |
CoxModel | Proportional Hazards Regression Model |
CoxStepAICModel | Proportional Hazards Regression Model |
cross_entropy | Performance Metrics |
curves | Model Performance Curves |
CVControl | Resampling Controls |
CVOptimismControl | Resampling Controls |
dependence | Partial Dependence |
diff | Model Performance Differences |
diff.MLModel | Model Performance Differences |
diff.Performance | Model Performance Differences |
diff.Resample | Model Performance Differences |
DiscreteVariate | Discrete Variate Constructors |
EarthModel | Multivariate Adaptive Regression Splines Model |
expand_model | Model Expansion Over Tuning Parameters |
expand_modelgrid | Model Tuning Grid Expansion |
expand_modelgrid.formula | Model Tuning Grid Expansion |
expand_modelgrid.matrix | Model Tuning Grid Expansion |
expand_modelgrid.MLModel | Model Tuning Grid Expansion |
expand_modelgrid.MLModelFunction | Model Tuning Grid Expansion |
expand_modelgrid.ModelFrame | Model Tuning Grid Expansion |
expand_modelgrid.ModelSpecification | Model Tuning Grid Expansion |
expand_modelgrid.recipe | Model Tuning Grid Expansion |
expand_params | Model Parameters Expansion |
expand_steps | Recipe Step Parameters Expansion |
extract | Extract Elements of an Object |
FDAModel | Flexible and Penalized Discriminant Analysis Models |
fit | Model Fitting |
fit.formula | Model Fitting |
fit.matrix | Model Fitting |
fit.MLModel | Model Fitting |
fit.MLModelFunction | Model Fitting |
fit.ModelFrame | Model Fitting |
fit.ModelSpecification | Model Fitting |
fit.recipe | Model Fitting |
fnr | Performance Metrics |
fpr | Performance Metrics |
f_score | Performance Metrics |
GAMBoostModel | Gradient Boosting with Additive Models |
GBMModel | Generalized Boosted Regression Model |
gini | Performance Metrics |
GLMBoostModel | Gradient Boosting with Linear Models |
GLMModel | Generalized Linear Model |
GLMNetModel | GLM Lasso or Elasticnet Model |
GLMStepAICModel | Generalized Linear Model |
ICHomes | Iowa City Home Sales Dataset |
inputs | Model Inputs |
kappa2 | Performance Metrics |
KNNModel | Weighted k-Nearest Neighbor Model |
LARSModel | Least Angle Regression, Lasso and Infinitesimal Forward Stagewise Models |
LDAModel | Linear Discriminant Analysis Model |
lift | Model Lift Curves |
LMModel | Linear Models |
MachineShop | MachineShop: Machine Learning Models and Tools |
mae | Performance Metrics |
MDAModel | Mixture Discriminant Analysis Model |
metricinfo | Display Performance Metric Information |
metrics | Performance Metrics |
MLControl | Resampling Controls |
MLMetric | MLMetric Class Constructor |
MLMetric<- | MLMetric Class Constructor |
MLModel | MLModel and MLModelFunction Class Constructors |
MLModelFunction | MLModel and MLModelFunction Class Constructors |
ModelFrame | ModelFrame Class |
ModelFrame.formula | ModelFrame Class |
ModelFrame.matrix | ModelFrame Class |
modelinfo | Display Model Information |
models | Models |
ModelSpecification | Model Specification |
ModelSpecification.default | Model Specification |
ModelSpecification.formula | Model Specification |
ModelSpecification.matrix | Model Specification |
ModelSpecification.ModelFrame | Model Specification |
ModelSpecification.recipe | Model Specification |
mse | Performance Metrics |
msle | Performance Metrics |
NaiveBayesModel | Naive Bayes Classifier Model |
NegBinomialVariate | Discrete Variate Constructors |
NNetModel | Neural Network Model |
npv | Performance Metrics |
OOBControl | Resampling Controls |
ParameterGrid | Tuning Parameters Grid |
ParameterGrid.list | Tuning Parameters Grid |
ParameterGrid.param | Tuning Parameters Grid |
ParameterGrid.parameters | Tuning Parameters Grid |
ParsnipModel | Parsnip Model |
PDAModel | Flexible and Penalized Discriminant Analysis Models |
performance | Model Performance Metrics |
performance.BinomialVariate | Model Performance Metrics |
performance.ConfusionList | Model Performance Metrics |
performance.ConfusionMatrix | Model Performance Metrics |
performance.factor | Model Performance Metrics |
performance.matrix | Model Performance Metrics |
performance.MLModel | Model Performance Metrics |
performance.numeric | Model Performance Metrics |
performance.Resample | Model Performance Metrics |
performance.Surv | Model Performance Metrics |
performance.TrainingStep | Model Performance Metrics |
performance_curve | Model Performance Curves |
performance_curve.default | Model Performance Curves |
performance_curve.Resample | Model Performance Curves |
plot | Model Performance Plots |
plot.Calibration | Model Performance Plots |
plot.ConfusionList | Model Performance Plots |
plot.ConfusionMatrix | Model Performance Plots |
plot.LiftCurve | Model Performance Plots |
plot.MLModel | Model Performance Plots |
plot.PartialDependence | Model Performance Plots |
plot.Performance | Model Performance Plots |
plot.PerformanceCurve | Model Performance Plots |
plot.Resample | Model Performance Plots |
plot.TrainingStep | Model Performance Plots |
plot.VariableImportance | Model Performance Plots |
PLSModel | Partial Least Squares Model |
PoissonVariate | Discrete Variate Constructors |
POLRModel | Ordered Logistic or Probit Regression Model |
ppr | Performance Metrics |
ppv | Performance Metrics |
precision | Performance Metrics |
predict | Model Prediction |
predict-method | Model Prediction |
predict.MLModelFit | Model Prediction |
Print MachineShop Objects | |
print.BinomialVariate | Print MachineShop Objects |
print.Calibration | Print MachineShop Objects |
print.DiscreteVariate | Print MachineShop Objects |
print.ListOf | Print MachineShop Objects |
print.MLControl | Print MachineShop Objects |
print.MLMetric | Print MachineShop Objects |
print.MLModel | Print MachineShop Objects |
print.MLModelFunction | Print MachineShop Objects |
print.ModelFrame | Print MachineShop Objects |
print.ModelRecipe | Print MachineShop Objects |
print.ModelSpecification | Print MachineShop Objects |
print.Performance | Print MachineShop Objects |
print.PerformanceCurve | Print MachineShop Objects |
print.RecipeGrid | Print MachineShop Objects |
print.Resample | Print MachineShop Objects |
print.SurvMatrix | Print MachineShop Objects |
print.SurvTimes | Print MachineShop Objects |
print.TrainingStep | Print MachineShop Objects |
print.VariableImportance | Print MachineShop Objects |
pr_auc | Performance Metrics |
QDAModel | Quadratic Discriminant Analysis Model |
quote | Quote Operator |
r2 | Performance Metrics |
RandomForestModel | Random Forest Model |
RangerModel | Fast Random Forest Model |
recall | Performance Metrics |
recipe_roles | Set Recipe Roles |
resample | Resample Estimation of Model Performance |
resample.formula | Resample Estimation of Model Performance |
resample.matrix | Resample Estimation of Model Performance |
resample.MLModel | Resample Estimation of Model Performance |
resample.MLModelFunction | Resample Estimation of Model Performance |
resample.ModelFrame | Resample Estimation of Model Performance |
resample.ModelSpecification | Resample Estimation of Model Performance |
resample.recipe | Resample Estimation of Model Performance |
response | Extract Response Variable |
response.MLModelFit | Extract Response Variable |
response.ModelFrame | Extract Response Variable |
response.ModelSpecification | Extract Response Variable |
response.recipe | Extract Response Variable |
rfe | Recursive Feature Elimination |
rfe.formula | Recursive Feature Elimination |
rfe.matrix | Recursive Feature Elimination |
rfe.MLModel | Recursive Feature Elimination |
rfe.MLModelFunction | Recursive Feature Elimination |
rfe.ModelFrame | Recursive Feature Elimination |
rfe.ModelSpecification | Recursive Feature Elimination |
rfe.recipe | Recursive Feature Elimination |
RFSRCFastModel | Fast Random Forest (SRC) Model |
RFSRCModel | Fast Random Forest (SRC) Model |
rmse | Performance Metrics |
rmsle | Performance Metrics |
roc_auc | Performance Metrics |
roc_index | Performance Metrics |
role_binom | Set Recipe Roles |
role_case | Set Recipe Roles |
role_pred | Set Recipe Roles |
role_surv | Set Recipe Roles |
RPartModel | Recursive Partitioning and Regression Tree Models |
SelectedInput | Selected Model Inputs |
SelectedInput.formula | Selected Model Inputs |
SelectedInput.list | Selected Model Inputs |
SelectedInput.matrix | Selected Model Inputs |
SelectedInput.ModelFrame | Selected Model Inputs |
SelectedInput.ModelSpecification | Selected Model Inputs |
SelectedInput.recipe | Selected Model Inputs |
SelectedModel | Selected Model |
SelectedModel.default | Selected Model |
SelectedModel.list | Selected Model |
SelectedModel.ModelSpecification | Selected Model |
SelectedModelFrame | Selected Model Inputs |
SelectedModelRecipe | Selected Model Inputs |
SelectedModelSpecification | Selected Model Inputs |
sensitivity | Performance Metrics |
settings | MachineShop Settings |
set_monitor | Training Parameters Monitoring Control |
set_monitor.MLControl | Training Parameters Monitoring Control |
set_monitor.MLOptimization | Training Parameters Monitoring Control |
set_monitor.ModelSpecification | Training Parameters Monitoring Control |
set_optim | Tuning Parameter Optimization |
set_optim_bayes | Tuning Parameter Optimization |
set_optim_bayes.ModelSpecification | Tuning Parameter Optimization |
set_optim_bfgs | Tuning Parameter Optimization |
set_optim_bfgs.ModelSpecification | Tuning Parameter Optimization |
set_optim_grid | Tuning Parameter Optimization |
set_optim_grid.ModelSpecification | Tuning Parameter Optimization |
set_optim_grid.TrainingParams | Tuning Parameter Optimization |
set_optim_grid.TunedInput | Tuning Parameter Optimization |
set_optim_grid.TunedModel | Tuning Parameter Optimization |
set_optim_method | Tuning Parameter Optimization |
set_optim_method.ModelSpecification | Tuning Parameter Optimization |
set_optim_pso | Tuning Parameter Optimization |
set_optim_pso.ModelSpecification | Tuning Parameter Optimization |
set_optim_sann | Tuning Parameter Optimization |
set_optim_sann.ModelSpecification | Tuning Parameter Optimization |
set_predict | Resampling Prediction Control |
set_strata | Resampling Stratification Control |
specificity | Performance Metrics |
SplitControl | Resampling Controls |
StackedModel | Stacked Regression Model |
step_kmeans | K-Means Clustering Variable Reduction |
step_kmedoids | K-Medoids Clustering Variable Selection |
step_lincomp | Linear Components Variable Reduction |
step_sbf | Variable Selection by Filtering |
step_spca | Sparse Principal Components Analysis Variable Reduction |
summary | Model Performance Summaries |
summary.ConfusionList | Model Performance Summaries |
summary.ConfusionMatrix | Model Performance Summaries |
summary.MLModel | Model Performance Summaries |
summary.MLModelFit | Model Performance Summaries |
summary.Performance | Model Performance Summaries |
summary.PerformanceCurve | Model Performance Summaries |
summary.Resample | Model Performance Summaries |
summary.TrainingStep | Model Performance Summaries |
SuperModel | Super Learner Model |
SurvEvents | SurvMatrix Class Constructors |
SurvMatrix | SurvMatrix Class Constructors |
SurvProbs | SurvMatrix Class Constructors |
SurvRegModel | Parametric Survival Model |
SurvRegStepAICModel | Parametric Survival Model |
SVMANOVAModel | Support Vector Machine Models |
SVMBesselModel | Support Vector Machine Models |
SVMLaplaceModel | Support Vector Machine Models |
SVMLinearModel | Support Vector Machine Models |
SVMModel | Support Vector Machine Models |
SVMPolyModel | Support Vector Machine Models |
SVMRadialModel | Support Vector Machine Models |
SVMSplineModel | Support Vector Machine Models |
SVMTanhModel | Support Vector Machine Models |
t.test | Paired t-Tests for Model Comparisons |
t.test.PerformanceDiff | Paired t-Tests for Model Comparisons |
tidy.step_kmeans | K-Means Clustering Variable Reduction |
tidy.step_lincomp | Linear Components Variable Reduction |
tidy.step_sbf | Variable Selection by Filtering |
tnr | Performance Metrics |
tpr | Performance Metrics |
TrainControl | Resampling Controls |
TreeModel | Classification and Regression Tree Models |
tunable.step_kmeans | K-Means Clustering Variable Reduction |
tunable.step_kmedoids | K-Medoids Clustering Variable Selection |
tunable.step_lincomp | Linear Components Variable Reduction |
tunable.step_spca | Sparse Principal Components Analysis Variable Reduction |
TunedInput | Tuned Model Inputs |
TunedInput.recipe | Tuned Model Inputs |
TunedModel | Tuned Model |
TunedModelRecipe | Tuned Model Inputs |
TuningGrid | Tuning Grid Control |
unMLModelFit | Revert an MLModelFit Object |
varimp | Variable Importance |
weighted_kappa2 | Performance Metrics |
XGBDARTModel | Extreme Gradient Boosting Models |
XGBLinearModel | Extreme Gradient Boosting Models |
XGBModel | Extreme Gradient Boosting Models |
XGBTreeModel | Extreme Gradient Boosting Models |
+-method | Combine MachineShop Objects |
. | Quote Operator |
[-method | Extract Elements of an Object |
[.BinomialVariate | Extract Elements of an Object |