Fit a mixture of beta distributions in p-values {MXM} | R Documentation |
Fit a mixture of beta distributions in p-values
Description
Fit a mixture of beta distributions in p-values.
Usage
pval.mixbeta(p)
Arguments
p |
A vector of p-values. |
Details
The p-values are assumed to follow a mixture of two beta distributions. The null p-values follow Be(1, 1) and the non-null p-values follow Be(\xi
, 1).
In the first step, the proportion of true null values using Storey and Tibshirani (2003) is calculated and then MLE is adopted to obtain \xi
.
For more information on this see Triantafillou (2014).
Value
A vector with the estimated \pi_0
and \xi
values.
Author(s)
Michail Tsagris
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr
References
Triantafillou S., Tsamardinos I. and Roumpelaki A. (2014). Learning neighborhoods of high confidence in constraint-based causal discovery. In European Workshop on Probabilistic Graphical Models, pp. 487-502.
Storey J.D. and Tibshirani R. (2003). Statistical significance for genome-wide experiments. Proceedings of the National Academy of Sciences, 100: 9440-9445.
See Also
pc.skel, mmhc.skel, corfs.network, local.mmhc.skel, conf.edge.lower
Examples
## simulate a dataset with continuous data
y <- rdag2(400, p = 25, nei = 3)
ind <- sample(1:25, 25)
x <- y$x[, ind]
mod <- pc.skel( x, method = "comb.fast", alpha = 0.01 )
pval <- as.vector( mod$pvalue[lower.tri(mod$pvalue)] )
pval.mixbeta(pval)