PP_Index {MVar.pt} | R Documentation |
Funcao para encontrar os indices da projection pursuit (PP).
Description
Funcao usada para encontrar os indices da projection pursuit (PP).
Usage
PP_Index(data, class = NA, vector.proj = NA,
findex = "HOLES", dimproj = 2, weight = TRUE,
lambda = 0.1, r = 1, ck = NA)
Arguments
data |
Conjunto de dados numericos sem a informacao das classes. |
class |
Vetor com os nomes das classes dos dados. |
vector.proj |
Vetor projecao. |
findex |
Funcao indice de projecao a ser usada: |
dimproj |
Dimensao da projecao dos dados (default = 2). |
weight |
Usado nos indice LDA, PDA e Lr, para ponderar os calculos pelo numero de elementos em cada classe (default = TRUE). |
lambda |
Usado no indice PDA (default = 0.1). |
r |
Usado no indice Lr (default = 1). |
ck |
Uso interno da funcao indice CHI. |
Value
num.class |
Numero de classes. |
class.names |
Nomes das classes. |
findex |
Funcao indice de projecao usada. |
vector.proj |
Vetores de projecao encontrados. |
index |
Indice de projecao encontrado no processo. |
Author(s)
Paulo Cesar Ossani
Marcelo Angelo Cirillo
References
Ossani, P. C.; Figueira, M. R.; Cirillo, M. A. Proposition of a new index for projection pursuit in the multiple factor analysis. Computational and Mathematical Methods, v. 1, p. 1-18, 2020.
Cook, D.; Buja, A.; Cabrera, J. Projection pursuit indexes based on orthonormal function expansions. Journal of Computational and Graphical Statistics, 2(3):225-250, 1993.
Cook, D.; Buja, A.; Cabrera, J.; Hurley, C. Grand tour and projection pursuit, Journal of Computational and Graphical Statistics, 4(3), 155-172, 1995.
Cook, D.; Swayne, D. F. Interactive and Dynamic Graphics for data Analysis: With R and GGobi. Springer. 2007.
Espezua, S.; Villanueva, E.; Maciel, C. D.; Carvalho, A. A projection pursuit framework for supervised dimension reduction of high dimensional small sample datasets. Neurocomputing, 149, 767-776, 2015.
Friedman, J. H., Tukey, J. W. A projection pursuit algorithm for exploratory data analysis. IEEE Transaction on Computers, 23(9):881-890, 1974.
Hastie, T., Buja, A., Tibshirani, R. Penalized discriminant analysis. The Annals of Statistics. 23(1), 73-102 . 1995.
Huber, P. J. Projection pursuit. Annals of Statistics, 13(2):435-475, 1985.
Jones, M. C.; Sibson, R. What is projection pursuit, (with discussion), Journal of the Royal Statistical Society, Series A 150, 1-36, 1987.
Lee, E. K.; Cook, D. A projection pursuit index for large p small n data. Statistics and Computing, 20(3):381-392, 2010.
Lee, E.; Cook, D.; Klinke, S.; Lumley, T. Projection pursuit for exploratory supervised classification. Journal of Computational and Graphical Statistics, 14(4):831-846, 2005.
Martinez, W. L., Martinez, A. R.; Computational Statistics Handbook with MATLAB, 2th. ed. New York: Chapman & Hall/CRC, 2007. 794 p.
Martinez, W. L.; Martinez, A. R.; Solka, J. Exploratory data Analysis with MATLAB, 2th. ed. New York: Chapman & Hall/CRC, 2010. 499 p.
Pena, D.; Prieto, F. Cluster identification using projections. Journal of the American Statistical Association, 96(456):1433-1445, 2001.
Posse, C. Projection pursuit exploratory data analysis, Computational Statistics and data Analysis, 29:669-687, 1995a.
Posse, C. Tools for two-dimensional exploratory projection pursuit, Journal of Computational and Graphical Statistics, 4:83-100, 1995b.
See Also
PP_Optimizer
and Plot.PP
Examples
data(iris) # conjunto de dados
data <- iris[,1:4]
# Exemplo 1 - Sem as classes nos dados
ind <- PP_Index(data = data, class = NA, vector.proj = NA,
findex = "moment", dimproj = 2, weight = TRUE,
lambda = 0.1, r = 1)
print("Numero de classes:"); ind$num.class
print("Nomes das classes:"); ind$class.names
print("Funcao indice de projecao:"); ind$findex
print("Vetores de projecao:"); ind$vector.proj
print("Indice de projecao:"); ind$index
# Exemplo 2 - Com as classes nos dados
class <- iris[,5] # classe dos dados
findex <- "pda" # funcao indice
sphere <- TRUE # Dados esfericos
res <- PP_Optimizer(data = data, class = class, findex = findex,
optmethod = "SA", dimproj = 2, sphere = sphere,
weight = TRUE, lambda = 0.1, r = 1, cooling = 0.9,
eps = 1e-3, maxiter = 1000, half = 30)
# Comparando o resultado obtido
if (match(toupper(findex),c("LDA", "PDA", "LR"), nomatch = 0) > 0) {
if (sphere) {
data <- apply(predict(prcomp(data)), 2, scale) # dados esfericos
}
} else data <- as.matrix(res$proj.data[,1:Dim])
ind <- PP_Index(data = data, class = class, vector.proj = res$vector.opt,
findex = findex, dimproj = 2, weight = TRUE, lambda = 0.1,
r = 1)
print("Numero de classes:"); ind$num.class
print("Nomes das classes:"); ind$class.names
print("Funcao indice de projecao:"); ind$findex
print("Vetores de projecao:"); ind$vector.proj
print("Indice de projecao:"); ind$index
print("Indice de projecao otimizado:"); res$index[length(res$index)]