MVPBT2 {MVPBT} | R Documentation |
Generalized Egger test to detect publication bias in bivariate meta-analysis for diagnostic accuracy test (MSSET2)
Description
Generalized Egger test to detect publication bias in bivariate meta-analysis for diagnostic accuracy test (called MSSET2 in Noma (2020)). This test does not consider the uncertainties of heterogeneity variance-covariance parameters, so MVPBT3
is recommended in practice.
Usage
MVPBT2(y,S)
Arguments
y |
Summary outcome statistics |
S |
Covariance estimates of |
Value
-
T
: The efficient score statistic. -
P
: P-value of the publication bias test (score test). -
b0
: Constrained maximum likelihood estimates of the regression intercepts.
References
Noma, H. (2020). Discussion of “Testing small study effects in multivariate meta-analysis” by Chuan Hong, Georgia Salanti, Sally Morton, Richard Riley, Haitao Chu, Stephen E. Kimmel, and Yong Chen. Biometrics 76: 1255-1259. doi:10.1111/biom.13343
Noma, H. (2022). MVPBT: R package for publication bias tests in meta-analysis of diagnostic accuracy studies. arXiv:2209.07270. doi:10.48550/arXiv.2209.07270
Examples
require(metafor)
require(mada)
data(cervical)
LAG <- cervical[cervical$method==2,]
fit1 <- reitsma(LAG)
summary(fit1) # results of the bivariate meta-analysis
###
attach(LAG)
dta1 <- edta(TP,FN,TN,FP)
oldpar <- par(mfrow=c(1,1))
par(mfrow=c(1,3))
plot(fit1, predict=TRUE, cex=1.5, pch=19, sroclty=1, sroclwd=1.5, lty=2,
main="(a) SROC plot", xlim=c(0,1), ylim=c(0,1))
points(dta1$Fp,dta1$Se,pch=20,col="blue")
#legend(0.4,0.1,legend=c("95% confidence region","95% prediction region"),lty=c(2,3))
###
attach(dta1)
res1 <- rma(y[,1], S[,1])
funnel(res1,main="(b) Funnel plot for logit(Se)")
regtest(res1, model="lm") # univariate Egger's test
res2 <- rma(y[,2], S[,3])
funnel(res2,main="(c) Funnel plot for logit(FPR)")
regtest(res2, model="lm") # univariate Egger's test
###
MVPBT2(y,S) # Generalized Egger test (MSSET2)
par(oldpar) # Reset the graphic parameter