MUS.binomial.bound {MUS} | R Documentation |
Calculate a binomial bound for a Monetary Unit Sampling evaluation.
Description
Calculates a binomial bound for a Monetary Unit Sampling evaluation.
Please treat as experimental.
Usage
MUS.binomial.bound(x, scope, as.pct, include.high.values, confidence.level)
Arguments
x |
A MUS.evaluation.result object (or a tainting vector) used to calculate the binomial bound. |
scope |
The required scope for the bound ("qty" or "value"). Default is "value". |
as.pct |
Boolean. Express results as percentage. Default is False. |
include.high.values |
Boolean. Whether the bound should include high values. Default is "TRUE". |
confidence.level |
The required confidence level. Default is 95%. |
Value
Upper Error Limit calculed using the binomial bound.
Author(s)
Andre Guimaraes <alsguimaraes@gmail.com>
See Also
MUS.evaluation
for evaluation of the audited sample.
Examples
# Assume 500 invoices, each between 1 and 1000 monetary units
data <- data.frame(book.value=round(runif(n=500, min=1, max=1000)))
# Plan a sample and cache it
plan <- MUS.planning(data=data, tolerable.error=10000, expected.error=2000)
# Extract a sample and cache it (no high values exist in this example)
extract <- MUS.extraction(plan)
# Copy book value into a new column audit values, and inject some error
audited <- extract$sample$book.value*(1-rbinom(nrow(extract$sample), 1, 0.05))
audited <- cbind(extract$sample, audit.value=audited)
# Evaluate the sample, cache and print it
evaluation <- MUS.evaluation(extract, audited)
MUS.binomial.bound(evaluation)
[Package MUS version 0.1.6 Index]