VARMAcov {MTS} | R Documentation |
Autocovariance Matrices of a VARMA Model
Description
Uses psi-weights to compute the autocovariance matrices of a VARMA model
Usage
VARMAcov(Phi = NULL, Theta = NULL, Sigma = NULL, lag = 12, trun = 120)
Arguments
Phi |
A k-by-kp matrix consisting of VAR coefficient matrices, Phi = [Phi1, Phi2, ..., Phip]. |
Theta |
A k-by-kq matrix consisting of VMA coefficient matrices, Theta = [Theta1, Theta2, ..., Thetaq] |
Sigma |
Covariance matrix of the innovations (k-by-k). |
lag |
Number of cross-covariance matrices to be computed. Default is 12. |
trun |
The lags of pis-weights used in calculation. Default is 120. |
Details
Use psi-weight matrices to compute approximate autocovariance matrices of a VARMA model.
Value
autocov |
Autocovariance matrices |
ccm |
Auto correlation matrices |
Author(s)
Ruey S. Tsay
References
Tsay (2014, Chapter 3). Multivariate Time Series Analysis with R and Financial Applications. John Wiley. Hoboken, NJ.
Examples
Phi=matrix(c(0.2,-0.6,0.3,1.1),2,2)
Sig=matrix(c(4,1,1,1),2,2)
VARMAcov(Phi=Phi,Sigma=Sig)
[Package MTS version 1.2.1 Index]