FEVdec {MTS} | R Documentation |
Forecast Error Variance Decomposition
Description
Computes the forecast error variance decomposition of a VARMA model
Usage
FEVdec(Phi, Theta, Sig, lag = 4)
Arguments
Phi |
VAR coefficient matrices in the form Phi=[Phi1, Phi2, ..., Phip], a k-by-kp matrix. |
Theta |
VMA coefficient matrices in form form Theta=[Theta1, Theta2, ..., Thetaq], a k-by-kq matrix. |
Sig |
The residual covariance matrix Sigma, a k-by-k positive definite matrix. |
lag |
The number of lags of forecast errors variance to be computed. Default is 4. |
Details
Use the psi-weight matrices to compute the forecast error covariance and use Cholesky decomposition to perform the decomposition
Value
irf |
Impulse response matrices |
orthirf |
Orthogonal impulse response matrices |
Omega |
Forecast error variance matrices |
OmegaR |
Forecast error variance decomposition |
Author(s)
Ruey S. Tsay
References
Tsay (2014, Chapter 3)
Examples
p1=matrix(c(0.2,-0.6,0.3,1.1),2,2)
theta1=matrix(c(-0.5,0,0,-0.6),2,2)
Sig=matrix(c(3,1,1,1),2,2)
m1=FEVdec(p1,theta1,Sig)
names(m1)
[Package MTS version 1.2.1 Index]