ECMvar {MTS} | R Documentation |
Error-Correction VAR Models
Description
Performs estimation of an Error-Correction VAR(p) model using the Quasi Maximum Likelihood Method.
Usage
ECMvar(x, p, ibeta, include.const = FALSE, fixed = NULL,
alpha = NULL, se.alpha = NULL, se.beta = NULL, phip =
NULL, se.phip = NULL)
Arguments
x |
A T-by-k data matrix of a k-dimensional co-integrated VAR process |
p |
VAR order |
ibeta |
Initial estimate of the co-integrating matrix. The number of columns of ibeta is the number of co-integrating series |
include.const |
A logical switch to include a constant term in the model. The default is no constant |
fixed |
A logical matrix to set zero parameter constraints. |
alpha |
Initial estimate of alpha, if any |
se.alpha |
Initial estimate of the standard error of alpha, if any |
se.beta |
Initial estimate of the standard error of beta, if any |
phip |
Initial estimate of the VAR coefficients, if any |
se.phip |
Initial estimate of the standard error of the VAR coefficients, if any |
Value
data |
The vector time series |
ncoint |
The number of co-integrating series |
arorder |
VAR order |
include.const |
Logical switch to include constant |
alpha , se.alpha |
Estimates and their standard errors of the alpha matrix |
beta , se.beta |
Estimates and their standard errors of the beta matrix |
aic , bic |
Information criteria of the fitted model |
residuals |
The residual series |
Sigma |
Residual covariance matrix |
Phip , se.Phip |
Estimates and their standard errors of VAR coefficients |
Author(s)
Ruey S. Tsay
References
Tsay (2014, Chapter 5)
See Also
ECMvar1
Examples
phi=matrix(c(0.5,-0.25,-1.0,0.5),2,2); theta=matrix(c(0.2,-0.1,-0.4,0.2),2,2)
Sig=diag(2)
mm=VARMAsim(300,arlags=c(1),malags=c(1),phi=phi,theta=theta,sigma=Sig)
zt=mm$series[,c(2,1)]
beta=matrix(c(1,0.5),2,1)
m1=ECMvar(zt,3,ibeta=beta)
names(m1)