BVAR {MTS} | R Documentation |
Bayesian Vector Autoregression
Description
Estimate a VAR(p) model using Bayesian approach, including the use of Minnesota prior
Usage
BVAR(z,p=1,C,V0,n0=5,Phi0=NULL,include.mean=T)
Arguments
z |
A matrix of vector time series, each column represents a series. |
p |
The AR order. Default is p=1. |
C |
The precision matrix of the coefficient matrix. With constant, the dimension of C is (kp+1)-by-(kp+1). The covariance matrix of the prior for the parameter vec(Beta) is Kronecker(Sigma_a,C-inverse). |
V0 |
A k-by-k covariance matrix to be used as prior for the Sigma_a matrix |
n0 |
The degrees of freedom used for prior of the Sigma_a matrix, the covariance matrix of the innovations. Default is n0=5. |
Phi0 |
The prior mean for the parameters. Default is set to NULL, implying that the prior means are zero. |
include.mean |
A logical switch controls the constant term in the VAR model. Default is to include the constant term. |
Details
for a given prior, the program provide the posterior estimates of a VAR(p) model.
Value
est |
Posterior means of the parameters |
Sigma |
Residual covariance matrix |
Author(s)
Ruey S. Tsay
References
Tsay (2014, Chapter 2).
Examples
data("mts-examples",package="MTS")
z=log(qgdp[,3:5])
zt=diffM(z)*100
C=0.1*diag(rep(1,7))
V0=diag(rep(1,3))
BVAR(zt,p=2,C,V0)