huber.reg {MTE} | R Documentation |
Huber estimation for linear regression
Description
This function produces Huber estimates for linear regression. Initial estimates is required. Currently, the function does not support automatic selection of huber tuning parameter.
Usage
huber.reg(y, X, beta.ini, alpha, intercept = FALSE)
Arguments
y |
the response vector |
X |
design matrix |
beta.ini |
initial value of estimates, could be from OLS. |
alpha |
1/alpha is the huber tuning parameter delta. Larger alpha results in smaller portion of squared loss. |
intercept |
logical input that indicates if intercept needs to be estimated. Default is FALSE. |
Value
beta |
the regression coefficient estimates |
fitted.value |
predicted response |
iter.steps |
iteration steps. |
Examples
set.seed(2017)
n=200; d=4
X=matrix(rnorm(n*d), nrow=n, ncol=d)
beta=c(1, -1, 2, -2)
y=-2+X%*%beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100))
beta0=beta.ls=lm(y~X)$coeff
beta.huber=huber.reg(y, X, beta0, 2, intercept=TRUE)$beta
cbind(c(-2,beta), beta.ls, beta.huber)
[Package MTE version 1.2 Index]