rmscn {MSclust} | R Documentation |
Multiple Scaled Contaminated Normal Distribution
Description
Probability density function and pseudo random number generation for the multiple scaled contaminated normal distribution.
Usage
dmscn(x, mu = NULL, L = NULL, G = NULL, Sigma = NULL, alpha = NULL, eta = NULL)
rmscn(n,d=2,mu=rep(0,d),L=NULL,G=NULL,Sigma=diag(d),alpha=rep(0.99,d),eta=rep(1.01,d))
Arguments
x |
A matrix or data frame such that rows correspond to observations and columns correspond to variables. |
n |
The number of random vectors to be generated. |
d |
A number specifing the dimenstion. |
mu |
Either a vector of length |
L |
Lambda diagonal |
G |
Gamma orthogonal |
Sigma |
A symmetric positive-definite |
alpha |
|
eta |
|
Value
dmscn |
returns a vector of density values. |
rmscn |
returns a matrix of |
Author(s)
Cristina Tortora and Antonio Punzo
References
Punzo, A. & Tortora, C. (2021). Multiple scaled contaminated normal distribution and its application in clustering. Statistical Modelling, 21(4): 332–358.
Examples
x <- matrix(c(0,0),1,2)
alpha <- c(0.8,0.6)
eta <- c(2,4)
density <- dmscn(x = x, alpha = alpha, eta = eta)
density
n <- 100
random <- rmscn(n = n, alpha = alpha, eta = eta)
plot(random)