| SignalProcessing {MSclassifR} | R Documentation |
Function performing post acquisition signal processing
Description
This function performs post acquisition signal processing for list of MassSpectrum objects using commonly used methods : transform intensities ("sqrt"), smoothing ("Wavelet"), remove baseline ("SNIP"), calibrate intensities ("TIC") and align spectra. Methods used are selected from the MALDIquant and MALDIrppa R packages.
Usage
SignalProcessing(x,
transformIntensity_method = "sqrt",
smoothing_method = "Wavelet",
removeBaseline_method = "SNIP",
removeBaseline_iterations = 25,
calibrateIntensity_method = "TIC",
alignSpectra_NoiseMethod = "MAD",
alignSpectra_method = "lowess",
alignSpectra_halfWs = 11,
alignSpectra_SN = 3,
tolerance_align = 0.002,
referenceSpectra = NULL,
minFrequency= 0.5,
binPeaks_method = "strict",
keepReferenceSpectra = FALSE,
...)
Arguments
x |
a |
transformIntensity_method |
a |
smoothing_method |
a |
removeBaseline_method |
a |
removeBaseline_iterations |
a |
calibrateIntensity_method |
a |
alignSpectra_NoiseMethod |
a |
alignSpectra_method |
a |
alignSpectra_halfWs |
a |
alignSpectra_SN |
a |
tolerance_align |
a |
referenceSpectra |
a |
minFrequency |
a |
binPeaks_method |
a |
keepReferenceSpectra |
a |
... |
other arguments from |
Details
The SignalProcessing function provides an analysis pipeline for MassSpectrum objects including intensity transformation, smoothing, removing baseline.
The Wavelet method relies on the wavShrink function of the wmtsa package and its dependencies (now archived by CRAN). The original C code by William Constantine and Keith L. Davidson, in turn including copyrighted routines by Insightful Corp., has been revised and included into MALDIrppa for the method to work.
All the methods used for SignalProcessing functions are selected from MALDIquant and MALDIrppa packages.
Value
A list of modified MassSpectrum objects (see MALDIquant R package) according to chosen arguments. If the argument referenceSpectra is not completed and the argument keepReferenceSpectra is TRUE, a list containing the MassSpectrum objects modified named "spectra" and the created reference spectrum named "RefS" is returned.
References
Gibb S, Strimmer K. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics. 2012 Sep 1;28(17):2270-1. doi: 10.1093/bioinformatics/bts447. Epub 2012 Jul 12. PMID: 22796955.
Javier Palarea-Albaladejo, Kevin Mclean, Frank Wright, David G E Smith, MALDIrppa: quality control and robust analysis for mass spectrometry data, Bioinformatics, Volume 34, Issue 3, 01 February 2018, Pages 522 - 523, doi: 10.1093/bioinformatics/btx628
Examples
library("MALDIquant")
library("MSclassifR")
## Load mass spectra
data("CitrobacterRKIspectra", package = "MSclassifR")
# plot first unprocessed mass spectrum
PlotSpectra(SpectralData=CitrobacterRKIspectra[[1]], col_spec="blue")
## spectral treatment
spectra <- SignalProcessing(CitrobacterRKIspectra,
transformIntensity_method = "sqrt",
smoothing_method = "Wavelet",
removeBaseline_method = "SNIP",
removeBaseline_iterations = 25,
calibrateIntensity_method = "TIC",
alignSpectra_Method = "MAD",
alignSpectra_halfWs = 11,
alignSpectra_SN = 3,
tolerance_align = 0.002)
# plot first processed mass spectrum
PlotSpectra(SpectralData=spectra[[1]], col_spec="blue")