simuHMM {MSTest} | R Documentation |
Simulate Hidden Markov model with normally distributed errors
Description
This function simulates a Hidden Markov Model process.
Usage
simuHMM(mdl_h0, burnin = 100)
Arguments
mdl_h0 |
List containing the following DGP parameters
|
burnin |
Number of simulated observations to remove from beginning. Default is |
Value
List with simulated series and its DGP parameters.
Examples
set.seed(1234)
# ----- Univariate ----- #
# Define DGP
mdl_hmm <- list(n = 1000,
q = 1,
mu = as.matrix(c(5,
-2)),
sigma = list(as.matrix(5.0),
as.matrix(7.0)),
k = 2,
P = rbind(c(0.90, 0.10),
c(0.10, 0.90)))
# Simulate process using simuHMM() function
y_hmm_simu <- simuHMM(mdl_hmm)
plot(y_hmm_simu)
# ----- Multivariate ----- #
# Define DGP
mdl_hmm <- list(n = 1000,
q = 2,
mu = rbind(c(5, -2),
c(10, 2)),
sigma = list(rbind(c(5.0, 1.5),
c(1.5, 1.0)),
rbind(c(7.0, 3.0),
c(3.0, 2.0))),
k = 2,
P = rbind(c(0.90, 0.10),
c(0.10, 0.90)))
# Simulate process using simuHMM() function
y_hmm_simu <- simuHMM(mdl_hmm)
plot(y_hmm_simu)
[Package MSTest version 0.1.2 Index]