data_examples {MRPC} | R Documentation |
Example data under simple and complex models
Description
Example data under the simple and complex graphs. Data may be continuous or discrete.
Usage
data(data_examples)
Details
For each model, the graph and a simulated data matrix are available for both continuous and discrete data.
For continuous data with genetic information: 1000 samples in row and 6 variables in column. First two columns are the genetic variants and remaning columns are gene expression.
Continuous data without genetic information: 1000 samples in row and 8 variables in column.
Discrete data with genetic information: 1000 samples in row and 6 variables in column. First column is the genetic variant and remaning columns are the gene expression.
Discrete data without genetic information: 1000 samples in row and 5 variables in column.
Continuous data with genetic information for complex model: 1000 samples in row and 22 variables in column. First 14 column is the genetic variants and remaning columns are the genes expression.
Value
A list that containing the numeric data matrix and components of a graph.
-
simple
: Simple model. -
complex
: Complex model. -
cont
: Continuous. -
disc
: Discrete. -
withGV
: With genetic information. -
withoutGV
: Without genetic information. -
data
: Data matrix. -
graph
: Components of a graph.
Author(s)
Md Bahadur Badsha (mbbadshar@gmail.com)
Examples
## Not run:
# Continuous data with genetic varitant (GV)
# load the data
data("data_examples")
data <- data_examples$simple$cont$withGV$data
# Extract the sample size
n <- nrow(data)
# Extract the node/column names
V <- colnames(data)
# Calculate Pearson correlation
suffStat_C <- list(C = cor(data),
n = n)
# Infer the graph by MRPC
data.mrpc.cont.withGV <- MRPC(data = data,
suffStat = suffStat_C,
GV = 2,
FDR = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = 'LOND',
verbose = FALSE)
# Plot the results
par(mfrow = c(1, 2))
# plot the true graph
plot(data_examples$simple$cont$withGV$graph,
main = "truth")
# plot the inferred graph
plot(data.mrpc.cont.withGV,
main = "inferred")
# Continuous data without genetic information
# load the data
data("data_examples")
data <- data_examples$simple$cont$withoutGV$data
# Extract the sample size
n <- nrow(data)
# Extract the node/column names
V <- colnames(data)
# Calculate Pearson correlation
suffStat_C <- list(C = cor(data),
n = n)
# Infer the graph by MRPC
data.mrpc.cont.withoutGV <- MRPC(data = data,
suffStat = suffStat_C,
GV = 0,
FDR = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = 'LOND',
verbose = FALSE)
# Plot the results
par(mfrow = c(1, 2))
# plot the true graph
plot(data_examples$simple$cont$withoutGV$graph,
main = "truth")
# plot the inferred graph
plot(data.mrpc.cont.withoutGV,
main = "inferred")
# Discrete data with genetic information
# load the data
data("data_examples")
data <- data_examples$simple$disc$withGV$data
# Extract the sample size
n <- nrow(data)
# Extract the node/column names
V <- colnames(data)
suffStat_C <- list (dm = data, adaptDF = FALSE, n.min = 1000)
# Infer the graph by MRPC
data.mrpc.disc.withGV <- MRPC(data = data,
suffStat = suffStat_C,
GV = 1,
FDR = 0.05,
indepTest = 'disCItest',
labels = V,
FDRcontrol = 'LOND',
verbose = FALSE)
# Plot the results
par (mfrow = c(1, 2))
# plot the true graph
plot(data_examples$simple$disc$withGV$graph,
main = "truth")
# Plot the inferred causal graph
plot(data.mrpc.disc.withGV,
main = "inferred")
# Discrete data without genetic information
# load the data
data("data_examples")
data <- data_examples$simple$disc$withoutGV$data
# Extract the sample size
n <- nrow (data)
# Extract the node/column names
V <- colnames(data)
suffStat_C <- list (dm = data, adaptDF = FALSE, n.min = 1000)
# Infer the graph by MRPC
data.mrpc.disc.withoutGV <- MRPC(data = data,
suffStat = suffStat_C,
GV = 1,
FDR = 0.05,
indepTest = 'disCItest',
labels = V,
FDRcontrol = 'LOND',
verbose = FALSE)
# Plot the results
par(mfrow = c(1, 2))
# plot the true graph
plot(data_examples$simple$disc$withoutGV$graph,
main = "truth")
# plot the inferred graph
plot(data.mrpc.disc.withoutGV,
main = "inferred")
# Continuous data with genetic information for complex model
# load the data
data("data_examples")
# Graph without clustering
plot(data_examples$complex$cont$withGV$graph)
# Adjacency matrix from directed example graph
Adj_directed <- as(data_examples$complex$cont$withGV$graph,
"matrix")
# Plot of dendrogram with modules colors of nodes
PlotDendrogramObj <- PlotDendrogram(Adj_directed,
minModuleSize = 5)
# Visualization of inferred graph with modules colors
PlotGraphWithModulesObj <- PlotGraphWithModules(Adj_directed,
PlotDendrogramObj,
GV = 14,
node.size = 8,
arrow.size = 5,
label.size = 3,
alpha = 1)
# plot
plot(PlotGraphWithModulesObj)
# Run MRPC on the complex data set with ADDIS as the FDR control method.
data <- data_examples$complex$cont$withGV$data
n <- nrow (data) # Number of rows
V <- colnames(data) # Column names
# Calculate Pearson correlation
suffStat_C <- list(C = cor(data),
n = n)
# Infer the graph by MRPC
MRPC.addis <- MRPC(data,
suffStat = suffStat_C,
GV = 14,
FDR = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = 'ADDIS',
tau = 0.5,
lambda = 0.25,
verbose = FALSE)
# Plot the true and inferred graphs.
par(mfrow = c(1, 2))
plot(data_examples$complex$cont$withGV$graph,
main = 'True graph')
plot(MRPC.addis,
main = 'Inferred graph')
## End(Not run)