roc_curves {MRMCaov} | R Documentation |
ROC Performance Curves
Description
Calculation of ROC curve true positive rate (TPR) and false positive rate (FPR) pairs for values of a numeric rating of a true binary response.
Usage
roc_curves(...)
## Default S3 method:
roc_curves(truth, rating, groups = list(), method = "empirical", ...)
## S3 method for class 'mrmc'
roc_curves(x, ...)
## S3 method for class 'stmc'
roc_curves(x, ...)
parameters(x, ...)
## S3 method for class 'roc_curve'
parameters(x, ...)
## S3 method for class 'roc_curves'
parameters(x, ...)
## S3 method for class 'mrmc'
parameters(x, ...)
## S3 method for class 'stmc'
parameters(x, ...)
## S3 method for class 'roc_curve'
points(
x,
metric = c("specificity", "sensitivity"),
values = seq(0, 1, length = 101),
...
)
## S3 method for class 'roc_curves'
points(
x,
metric = c("specificity", "sensitivity"),
values = seq(0, 1, length = 101),
...
)
## S3 method for class 'empirical_curve'
points(
x,
metric = c("specificity", "sensitivity"),
values = NULL,
which = c("curve", "curves", "observed"),
ties = max,
...
)
## S3 method for class 'empirical_curves'
points(
x,
metric = c("specificity", "sensitivity"),
values = NULL,
which = c("curve", "curves", "observed"),
ties = max,
...
)
## S3 method for class 'roc_curve'
mean(x, ...)
## S3 method for class 'roc_curves'
mean(x, ...)
## S3 method for class 'binormal_curves'
mean(x, method = c("points", "parameters"), ...)
Arguments
... |
arguments passed from the |
truth |
vector of true binary statuses. |
rating |
vector of numeric ratings. |
groups |
list or data frame of grouping variables of the same lengths as
|
method |
character string indicating the curve type as
|
x |
object returned by |
metric |
reader performance metric to which the |
values |
numeric vector of values at which to compute ROC curve points,
or |
which |
character string indicating whether to use curve-specific
observed values and 0 and 1 ( |
ties |
function determining empirical roc points returned in cases of ties. |
Value
Function roc_curves
returns an roc_curve
class object of a
single estimated ROC curve or an roc_curves
class object of grouped
ROC curves. Function parameters
extracts the parameters that define
the curves, points
returns a data frame of points on individual
curves, and means
returns points on averaged curves (Chen and
Samuelson, 2014).
References
Chen W and Samuelson FW (2014). The average receiver operating characteristic curve in multireader multicase imaging studies. The British Journal of Radiology, 87(1040): 20140016.
See Also
Examples
curves <- with(VanDyke,
roc_curves(truth, rating, groups = list(Test = treatment, Reader = reader))
)
points(curves)
mean(curves)