mrce {MRCE} | R Documentation |
Do multivariate regression with covariance estimation (MRCE)
Description
Let S_{+}^q
be the set of q
by q
symmetric and positive definite matrices
and let y_i\in R^q
be the measurements of the q
responses for the i
th subject
(i=1,\ldots, n
).
The model assumes that y_i
is a realization of the q
-variate random vector
Y_i = \mu + \beta'x_i + \varepsilon_i, \ \ \ \ i=1,\ldots, n
where \mu\in R^q
is an unknown intercept vector;
\beta\in R^{p\times q}
is an unknown regression coefficient matrix;
x_i \in R^p
is the known vector of values for i
th subjects's predictors,
and \varepsilon_1,\ldots, \varepsilon_n
are n
independent copies of a q
-variate Normal random
vector with mean 0 and unknown inverse covariance
matrix \Omega \in S_{+}^q
.
This function computes penalized likelihood estimates of the unknown parameters
\mu
, \beta
, and \Omega
.
Let \bar y=n^{-1} \sum_{i=1}^n y_i
and \bar{x} = n^{-1}\sum_{i=1}^n x_i
.
These estimates are
(\hat{\beta}, \hat\Omega) = \arg\min_{(B, Q)\in R^{p\times q}\times S_{+}^q}
\left\{g(B, Q) +\lambda_1
\left(\sum_{j\neq k} |Q_{jk}| + 1(p\geq n) \sum_{j=1}^q |Q_{jj}| \right)
+ 2\lambda_{2}\sum_{j=1}^p\sum_{k=1}^q |B_{jk}|\right\}
and \hat\mu=\bar y - \hat\beta'\bar x
, where
g(B, Q) = {\rm tr}\{n^{-1}(Y-XB)'(Y-XB) Q\}-\log|Q|,
Y\in R^{n\times q}
has i
th row (y_{i}-\bar y)'
,
and X\in R^{n\times p}
has i
th row (x_{i}-\bar{x})'
.
Usage
mrce(X,Y, lam1=NULL, lam2=NULL, lam1.vec=NULL, lam2.vec=NULL,
method=c("single", "cv", "fixed.omega"),
cov.tol=1e-4, cov.maxit=1e3, omega=NULL,
maxit.out=1e3, maxit.in=1e3, tol.out=1e-8,
tol.in=1e-8, kfold=5, silent=TRUE, eps=1e-5,
standardize=FALSE, permute=FALSE)
Arguments
X |
An |
Y |
An |
lam1 |
A single value for |
lam2 |
A single value for |
lam1.vec |
A vector of candidate values for |
lam2.vec |
A vector of candidate values for |
method |
There are three options:
|
cov.tol |
Convergence tolerance for the glasso algorithm that minimizes the objective function (defined above)
with |
cov.maxit |
The maximum number of iterations allowed for the glasso algorithm that minimizes the objective function
(defined above)
with |
omega |
A user-supplied fixed value of |
maxit.out |
The maximum number of iterations allowed for the outer loop of the exact MRCE algorithm. |
maxit.in |
The maximum number of iterations allowed for the algorithm that minimizes the objective function, defined above,
with |
tol.out |
Convergence tolerance for outer loop of the exact MRCE algorithm. |
tol.in |
Convergence tolerance for the algorithm that minimizes the objective function, defined above,
with |
kfold |
The number of folds to use when |
silent |
Logical: when |
eps |
The algorithm will terminate if the minimum diagonal entry of the current iterate's residual
sample covariance is less than |
standardize |
Logical: should the columns of |
permute |
Logical: when |
Details
Please see Rothman, Levina, and Zhu (2010)
for more information on the algorithm and model.
This version of the software uses the glasso algorithm (Friedman et al., 2008) through the R package glasso
.
If the algorithm is running slowly, track its progress with silent=FALSE
.
In some cases, choosing cov.tol=0.1
and tol.out=1e-10
allows the algorithm to make
faster progress. If one uses a matrix for lam2
, consider setting tol.in=1e-12
.
When p \geq n
,
the diagonal of the optimization variable corresponding
to the inverse covariance matrix of the error is penalized.
Without diagonal penalization, if there exists a \bar B
such
that the q
th column of Y
is equal to the q
th
column of X\bar B
,
then a global minimizer of the objective function
(defined above) does not exist.
The algorithm that minimizes the objective function, defined above,
with Q
fixed uses a similar update strategy and termination
criterion to those used by Friedman et al. (2010) in the corresponding R package glmnet
.
Value
A list containing
Bhat |
This is |
muhat |
This is the intercept estimate |
omega |
This is |
mx |
This is |
my |
This is |
best.lam1 |
The selected value for |
best.lam2 |
The selected value for |
cv.err |
Cross validation error matrix with |
Note
The algorithm is fastest when \lambda_1
and \lambda_2
are large.
Use silent=FALSE
to
check if the algorithm is converging before the total iterations exceeds maxit.out
.
Author(s)
Adam J. Rothman
References
Rothman, A. J., Levina, E., and Zhu, J. (2010) Sparse multivariate regression with covariance estimation. Journal of Computational and Graphical Statistics. 19: 947–962.
Jerome Friedman, Trevor Hastie, Robert Tibshirani (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441.
Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.
Examples
set.seed(48105)
n=50
p=10
q=5
Omega.inv=diag(q)
for(i in 1:q) for(j in 1:q)
Omega.inv[i,j]=0.7^abs(i-j)
out=eigen(Omega.inv, symmetric=TRUE)
Omega.inv.sqrt=tcrossprod(out$vec*rep(out$val^(0.5), each=q),out$vec)
Omega=tcrossprod(out$vec*rep(out$val^(-1), each=q),out$vec)
X=matrix(rnorm(n*p), nrow=n, ncol=p)
E=matrix(rnorm(n*q), nrow=n, ncol=q)%*%Omega.inv.sqrt
Beta=matrix(rbinom(p*q, size=1, prob=0.1)*runif(p*q, min=1, max=2), nrow=p, ncol=q)
mu=1:q
Y=rep(1,n)%*%t(mu) + X%*%Beta + E
lam1.vec=rev(10^seq(from=-2, to=0, by=0.5))
lam2.vec=rev(10^seq(from=-2, to=0, by=0.5))
cvfit=mrce(Y=Y, X=X, lam1.vec=lam1.vec, lam2.vec=lam2.vec, method="cv")
cvfit
fit=mrce(Y=Y, X=X, lam1=10^(-1.5), lam2=10^(-0.5), method="single")
fit
lam2.mat=1000*(fit$Bhat==0)
refit=mrce(Y=Y, X=X, lam2=lam2.mat, method="fixed.omega", omega=fit$omega, tol.in=1e-12)
refit