gexppg {MPS} | R Documentation |
geometric exponential Poisson G distribution
Description
Computes the pdf, cdf, quantile, and random numbers, draws the q-q plot, and estimates the parameters of the geometric exponential Poisson G
distribution. General form for the probability density function (pdf) of the geometric exponential Poisson G
distribution due to Nadarajah et al. (2013) is given by
f(x,{\Theta}) = \frac{{a(1 - b)\,g(x-\mu,\theta )\left( {1 - {e^{ - a}}} \right){e^{ - a + a\,G(x-\mu,\theta )}}}}{{{{\left( {1 - {e^{ - a}} - b + b{e^{ - a + a\,G(x-\mu,\theta )}}} \right)}^2}}},
where \theta
is the baseline family parameter vector. Also, a>0, 0<b<1, and \mu
are the extra parameters induced to the baseline cumulative distribution function (cdf) G
whose pdf is g
. The general form for the cumulative distribution function (cdf) of the geometric exponential Poisson G
distribution is given by
F(x,{\Theta}) = \frac{{{e^{ - a + aG(x-\mu,\theta )}} - {e^{ - a}}}}{{{{{1 - {e^{ - a}} - b + b{e^{ - a + aG(x-\mu,\theta )}}}}}}}.
Here, the baseline G
refers to the cdf of famous families such as: Birnbaum-Saunders, Burr type XII, Exponential, Chen, Chisquare, F, Frechet, Gamma, Gompertz, Linear failure rate (lfr), Log-normal, Log-logistic, Lomax, Rayleigh, and Weibull. The parameter vector is \Theta=(a,b,\theta,\mu)
where \theta
is the baseline G
family's parameter space. If \theta
consists of the shape and scale parameters, the last component of \theta
is the scale parameter (here, a and b are the first and second shape parameters). Always, the location parameter \mu
is placed in the last component of \Theta
.
Usage
dgexppg(mydata, g, param, location = TRUE, log=FALSE)
pgexppg(mydata, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
qgexppg(p, g, param, location = TRUE, log.p = FALSE, lower.tail = TRUE)
rgexppg(n, g, param, location = TRUE)
qqgexppg(mydata, g, location = TRUE, method)
mpsgexppg(mydata, g, location = TRUE, method, sig.level)
Arguments
g |
The name of family's pdf including: " |
p |
a vector of value(s) between 0 and 1 at which the quantile needs to be computed. |
n |
number of realizations to be generated. |
mydata |
Vector of observations. |
param |
parameter vector |
location |
If |
log |
If |
log.p |
If |
lower.tail |
If |
method |
The used method for maximizing the sum of log-spacing function. It will be " |
sig.level |
Significance level for the Chi-square goodness-of-fit test. |
Details
It can be shown that the Moran's statistic follows a normal distribution. Also, a chi-square approximation exists for small samples whose mean and variance approximately are m(log
(m)+0.57722)-0.5-1/(12m) and m(\pi^2
/6-1)-0.5-1/(6m), respectively, with m=n+1
, see Cheng and Stephens (1989). So, a hypothesis tesing can be constructed based on a sample of n
independent realizations at the given significance level, indicated in above as sig.level
.
Value
A vector of the same length as
mydata
, giving the pdf values computed atmydata
.A vector of the same length as
mydata
, giving the cdf values computed atmydata
.A vector of the same length as
p
, giving the quantile values computed atp
.A vector of the same length as
n
, giving the random numbers realizations.A sequence of goodness-of-fit statistics such as: Akaike Information Criterion (
AIC
), Consistent Akaike Information Criterion (CAIC
), Bayesian Information Criterion (BIC
), Hannan-Quinn information criterion (HQIC
), Cramer-von Misses statistic (CM
), Anderson Darling statistic (AD
), log-likelihood statistic (log
), and Moran's statistic (M
). The Kolmogorov-Smirnov (KS
) test statistic and correspondingp-value
. The Chi-square test statistic, critical upper tail Chi-square distribution, relatedp-value
, and the convergence status.
Author(s)
Mahdi Teimouri
References
Cheng, R. C. H. and Stephens, M. A. (1989). A goodness-of-fit test using Moran's statistic with estimated parameters, Biometrika, 76 (2), 385-392.
Nadarajah, S., Cancho, V. G., and Ortega, E. M. M. (2013). The geometric exponential Poisson distribution, Statistical Methods & Applications, 22, 355-380.
Examples
mydata<-rweibull(100,shape=2,scale=2)+3
dgexppg(mydata, "weibull", c(1,0.5,2,2,3))
pgexppg(mydata, "weibull", c(1,0.5,2,2,3))
qgexppg(runif(100), "weibull", c(1,0.5,2,2,3))
rgexppg(100, "weibull", c(1,0.5,2,2,3))
qqgexppg(mydata, "weibull", TRUE, "Nelder-Mead")
mpsgexppg(mydata, "weibull", TRUE, "Nelder-Mead", 0.05)