psyfun.boot {MPDiR} | R Documentation |
Bootstrapping Standard Errors of Psychometric Function Parameters
Description
A function that will run a bootstrap on the estimated parameters of a psychometric function fit given a model object.
Usage
psyfun.boot(obj, N = 100)
Arguments
obj |
object inheriting from class ‘glm’ from a fit of a psychometric function |
N |
integer indicating number of bootstrap replications. |
Details
The function computes new binomial responses based on the fitted probabilities of the model object for each bootstrap replication. A psychometric function is then fit to each one and the fitted coefficients returned as a bootstrap replicate.
Value
Returns a matrix with one row for each coefficient of the model and one column for each bootstrap replication.
Author(s)
Kenneth Knoblauch
References
Maloney, L. T. (1990) Confidence interval for the parameters of psychometric functions. Perception & Psychophysics, 47(2), 127–134.
Foster, D.H., Bischof, W.F.(1997) Bootstrap estimates of the statistical accuracy of thresholds obtained from psychometric functions. Spatial Vision, 11(1), 135–139.
Treutwein, B., Strasburger, H. (1999) Fitting the psychometric function. Perception & Psychophysics, 61(1), 87–106.
Examples
data(HSP)
SHR2 <- subset(HSP, Obs == "SH" & Run == "R2")
SHR2 <- within(SHR2, {
nyes <- N * p/100
nno <- N - nyes
})
SHR2.glm <- glm(cbind(nyes, nno) ~ log(Q), binomial, SHR2)
### For a real problem, set N to 10000 or so
SHR2.boot <- psyfun.boot(SHR2.glm, 10)