MPCI-package {MPCI} | R Documentation |
Multivariate Process Capability Indices (MPCI)
Description
It allows the computation of the following Multivariate Process Capability Indices (MPCI):
Shahriari et al. (1995) Multivariate Capability Vector. Taam et al. (1993) Multivariate Capability Index (MCpm). Pan and Lee (2010) correction of the Taam et al. (1993)(NMCpm). and the followings based on Principal Component Analysis (PCA): Wang and Chen (1998) Multivariate Process Capability Indices (MPCI), Xekalaki and Perakis (2002) MPCI. Wang (2005) MPCI
Author(s)
Edgar Santos-Fernandez, Michele Scagliarini.
Maintainer: Edgar Santos-Fernandez <edgar.santosfdez@gmail.com>
References
Anderson, T W (1963). "Asymptotic theory for principal component analysis". The Annals of Mathematical Statistics, 34, 122-148.
Chen H (1994). "A multivariate process Capability index over a rectangular solid zone." Statistica Sinica, 4, 749-758.
Hubele N, Shahriari H, Cheng C (1991). "A bivariate process Capability vector". In JB. Keats and DC.Montgomery (Eds.) "Statistical Process Control in Manufacturing".Marcel Dekker,New York.
Jackson, J E (1991). "A user's guide to principal components". John Wiley & Sons. New York.
Pan J N, Lee C Y (2010). "New capability indices for evaluating the performance of multivariate manufacturing processes". Quality and Reliability Engineering International 26(1)
Rencher,A C (2002) "Methods of Multivariate Analysis". 2nd Ed. John Wiley & Sons. New York.
Santos-Fernandez E, Scagliarini M (2012). "MPCI: An R Package for Computing Multivariate Process Capability Indices". Journal of Statistical Software, 47(7), 1-15, URL http://www.jstatsoft.org/v47/i07/.
Scagliarini M (2011). "Multivariate process capability using principal component analysis in the presence of measurement errors." AStA Advances in Statistical Analysis, 95, 346-357.
Shahriari H, Hubele N, Lawrence F (1995). "A multivariate process capability vector." Proceedings of the 4th Industrial Engineering Research Conference, 1, 304-309.
Taam W, Subbaiah P, Liddy W (1993). "A note on multivariate capability indices." Journal of Applied Statistics, 20, 339-351.
Wang, C (2005) "Constructing multivariate process capability indices for short-run production." The International Journal of Advanced Manufacturing Technology, 26, 1306-1311.
Wang F, Chen J (1998). "Capability index using principal components analysis." Quality Engineering, 11, 21-27.
Wang F, Hubele N, Lawrence F, Miskulin J, Shahriari H (2000). "Comparison of three multivariate process capability indices." Journal of Quality Technology, 32, 263-275.
Xekalaki E, Perakis M (2002). "The Use of principal component analysis in the assessment of process capability indices." Proceedings of the Joint Statistical Meetings of the American Statistical Association, The Institute of Mathematical Statistics, The Canadian Statistical Society. New York.
See Also
MSQC package
Examples
alpha <- 0.0027
Target <- c(2.2, 304.8, 304.8)
LSL <- c(2.1, 304.5, 304.5)
USL <- c(2.3, 305.1, 305.1)
x <- matrix(c(2.196,2.184,2.135,2.140,2.119,2.163,2.145,2.209,2.227,2.277
,304.728,304.704,304.713,304.721,304.724,304.670,304.699,304.791,304.737
,304.859,304.798,304.746,304.680,304.719,304.767,304.792,304.753,304.816
,304.754,304.822),nrow = 10) # Matrix with three columns (quality
# characteristics) and ten rows (number observations)
#Computing the Shahriari et al. (1995) Multivariate Capability Vector
mpci(index="shah",x,LSL,USL,Target,alpha)
#Performing the Taam et al. (1993) Multivariate Capability Index (MCpm)
mpci(index="taam",x,LSL,USL,Target,alpha)
#Performing the Pan and Lee. (2010) correction of the Multivariate Capability Index (NMCpm)
mpci(index="pan",x,LSL,USL,Target,alpha)
#Computing the Wang and Chen (1998) Multivariate Process Capability Indices(MPCI)
alpha = 0.05
mpci(index="wang", x,LSL,USL,Target)
#Performing the Xekalaki and Perakis (2002) MPCI.
mpci(index="xeke",x,LSL,USL,
Target,
Method = 2)
#Computing the Wang (2005) MPCI
mpci(index="wangw",x,LSL,USL,
Target,
Method = 1,
alpha = 0.05)