d.ind.t {MOTE} | R Documentation |
d for Between Subjects with Pooled SD Denominator
Description
This function displays d for between subjects data and the non-central confidence interval using the pooled standard deviation as the denominator.
Usage
d.ind.t(m1, m2, sd1, sd2, n1, n2, a = 0.05)
Arguments
m1 |
mean group one |
m2 |
mean group two |
sd1 |
standard deviation group one |
sd2 |
standard deviation group two |
n1 |
sample size group one |
n2 |
sample size group two |
a |
significance level |
Details
To calculate d, mean two is subtracted from mean one and divided by the pooled standard deviation.
d_s = (m1 - m2) / spooled
Learn more on our example page.
Value
Provides the effect size (Cohen's d) with associated confidence intervals, the t-statistic, the confidence intervals associated with the means of each group, as well as the standard deviations and standard errors of the means for each group.
d |
effect size |
dlow |
lower level confidence interval of d value |
dhigh |
upper level confidence interval of d value |
M1 |
mean of group one |
sd1 |
standard deviation of group one mean |
se1 |
standard error of group one mean |
M1low |
lower level confidence interval of group one mean |
M1high |
upper level confidence interval of group one mean |
M2 |
mean of group two |
sd2 |
standard deviation of group two mean |
se2 |
standard error of group two mean |
M2low |
lower level confidence interval of group two mean |
M2high |
upper level confidence interval of group two mean |
spooled |
pooled standard deviation |
sepooled |
pooled standard error |
n1 |
sample size of group one |
n2 |
sample size of group two |
df |
degrees of freedom (n1 - 1 + n2 - 1) |
t |
t-statistic |
p |
p-value |
estimate |
the d statistic and confidence interval in APA style for markdown printing |
statistic |
the t-statistic in APA style for markdown printing |
Examples
#The following example is derived from the "indt_data" dataset, included
#in the MOTE library.
#A forensic psychologist conducted a study to examine whether
#being hypnotized during recall affects how well a witness
#can remember facts about an event. Eight participants
#watched a short film of a mock robbery, after which
#each participant was questioned about what he or she had
#seen. The four participants in the experimental group
#were questioned while they were hypnotized. The four
#participants in the control group recieved the same
#questioning without hypnosis.
t.test(correctq ~ group, data = indt_data)
#You can type in the numbers directly, or refer to the dataset,
#as shown below.
d.ind.t(m1 = 17.75, m2 = 23, sd1 = 3.30,
sd2 = 2.16, n1 = 4, n2 = 4, a = .05)
d.ind.t(17.75, 23, 3.30, 2.16, 4, 4, .05)
d.ind.t(mean(indt_data$correctq[indt_data$group == 1]),
mean(indt_data$correctq[indt_data$group == 2]),
sd(indt_data$correctq[indt_data$group == 1]),
sd(indt_data$correctq[indt_data$group == 2]),
length(indt_data$correctq[indt_data$group == 1]),
length(indt_data$correctq[indt_data$group == 2]),
.05)
#Contrary to the hypothesized result, the group that underwent hypnosis were
#significantly less accurate while reporting facts than the control group
#with a large effect size, t(6) = -2.66, p = .038, d_s = 1.88.