scalarization_awt {MOEADr} | R Documentation |
Adjusted Weighted Tchebycheff Scalarization
Description
Perform Adjusted Weighted Tchebycheff Scalarization for the MOEADr package.
Usage
scalarization_awt(Y, W, minP, eps = 1e-16, ...)
Arguments
Y |
matrix of objective function values |
W |
matrix of weights. |
minP |
numeric vector containing estimated ideal point |
eps |
tolerance value for avoiding divisions by zero. |
... |
other parameters (included for compatibility with generic call) |
Details
This routine calculates the scalarized performance values for the MOEA/D using the Adjusted Weighted Tchebycheff method.
Value
Vector of scalarized performance values.
References
Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, “MOEA/D with
adaptive weight adjustment,” Evolutionary Computation, vol. 22,
no. 2, pp. 231–264, 2013.
R. Wang, T. Zhang, and B. Guo, “An enhanced MOEA/D using uniform
directions and a pre-organization procedure,” in IEEE Congress on
Evolutionary Computation, Cancun, Mexico, 2013, pp. 2390–2397.
F. Campelo, L.S. Batista, C. Aranha (2020): The MOEADr Package: A
Component-Based Framework for Multiobjective Evolutionary Algorithms Based on
Decomposition. Journal of Statistical Software doi:10.18637/jss.v092.i06
Examples
W <- generate_weights(decomp = list(name = "sld", H = 19), m = 2)
Y <- matrix(runif(40), ncol = 2)
minP <- apply(Y, 2, min)
Z <- scalarization_awt(Y, W, minP)