cv.MNS {MNS} | R Documentation |
Select regularization parameters via cross-validation
Description
Select regularization parameters via K-fold cross-validation
Usage
cv.MNS(dat, l1range, alpharange,
K = 5, parallel = FALSE,
cores = NULL, verbose = FALSE)
Arguments
dat |
List where each entry corresponds to the time series observations for each subject |
l1range |
Vector of candidate regularization parameters. See details below |
alpharange |
Vector of candidate weighting parameters. See details below. |
K |
Number of cross-validation folds |
parallel |
Indicate whether model fit should be done in parallel. Default is FALSE |
cores |
If fit in parallel, indicate how many units/cores should be used |
verbose |
Print progress. Only available for non-parallel implementation |
Details
Select regularization parameters via cross-validation. In the interest of simplicity we re-parameterize penalty as an elastic net penalty:
\lambda * \alpha || \beta||_1 + \lambda * (1-\alpha) || \sigma||_1
Thus \lambda
is the regularization parameter (specified by the l1range
argument)
and \alpha
is the weighting parameter (specified by the alpharange
argument).
Value
l1 |
selected regularization parameter |
alpha |
selected weighting parameter |
CV |
grid of cross-validation error for each pair of regularization parameters |
Author(s)
Ricardo Pio Monti
References
Arlot, S., and Alain C. "A survey of cross-validation procedures for model selection." Statistics surveys 4 (2010): 40-79.
Monti, R., Anagnostopolus, C., Montana, G. "Inferring brain connectivity networks from functional MRI data via mixed neighbourhood selection", arXiv, 2015
See Also
Examples
set.seed(1)
Dat = gen.Network(p = 10, Nsub = 5,
sparsity = .2, REsize=10, REprob=.5,
REnoise = 1, Nobs=20)
## Not run:
CVs = cv.MNS(dat = Dat, l1range = seq(.1, .5, length.out=10),
alpharange = seq(.2, .8, length.out = 5),
parallel = FALSE, verbose = TRUE)
## End(Not run)