qMNB {MNB}R Documentation

Randomized quantile residual

Description

randomized quantile residual is available to assess possible departures from the multivariate negative binomial model for fitting correlated data with overdispersion.

Usage

qMNB(par, formula, dataSet)

Arguments

par

the maximum likelihood estimates.

formula

The structure matrix of covariates of dimension n x p (in models that include an intercept x should contain a column of ones).

dataSet

data

Details

The randomized quantile residual (Dunn and Smyth, 1996), which follow a standard normal distribution is used to assess departures from the multivariate negative binomial model.

Value

Randomized quantile Residuals

Author(s)

Jalmar M F Carrasco <carrascojalmar@gmail.com>, Cristian M Villegas Lobos <master.villegas@gmail.com> and Lizandra C Fabio <lizandrafabio@gmail.com>

References

Examples


data(seizures)
head(seizures)

star <-list(phi=1, beta0=1, beta1=1, beta2=1, beta3=1)
mod <- fit.MNB(formula=Y ~ trt + period +
trt:period + offset(log(weeks)),star=star,dataSet=seizures,tab=FALSE)
par <- mod$par
names(par)<-c()

res.q <- qMNB(par=par,formula=Y ~ trt + period + trt:period +
offset(log(weeks)),dataSet=seizures)

plot(res.q,ylim=c(-3,4.5),ylab="Randomized quantile residual",
xlab="Index",pch=15,cex.lab = 1.5, cex = 0.6, bg = 5)
abline(h=c(-2,0,2),lty=3)
#identify(res.q)


data(alzheimer)
head(alzheimer)

star <- list(phi=10,beta1=2, beta2=0.2)
mod <- fit.MNB(formula = Y ~ trat, star = star, dataSet = alzheimer,tab=FALSE)

par<- mod$par
names(par) <- c()
re.q <- qMNB(par=par,formula = Y ~ trat, dataSet = alzheimer)
head(re.q)


[Package MNB version 1.1.0 Index]