MNARcluster {MNARclust} | R Documentation |
Clustering function
Description
Clustering method to analyze continuous or mixed-type data with missingness. The missingness mechanism can be non ignorable. The approach considers a semi-parametric mixture model.
Usage
MNARcluster(
x,
K,
nbinit = 20,
nbCPU = 1,
tol = 0.01,
band = band.default(x),
seedvalue = 123
)
Arguments
x |
matrix used for clustering |
K |
number of components |
nbinit |
number of random starting points |
nbCPU |
number of CPU used for parallel computing (only Unix and Linux systems are allowed) |
tol |
stopping rule |
band |
bandwidth (numeric vector). |
seedvalue |
value of the seed (used to set the initializations of the MM algorithm) |
Value
Returns a list containing the proportions (proportions), matrix of probabilities of missngness (rho), the posterior probabilities of classification (classproba), the partition (zhat) and the logarithme of the smoothed-likelihood (logSmoothlike)
References
Clustering Data with Non-Ignorable Missingness using Semi-Parametric Mixture Models, Marie Du Roy de Chaumaray and Matthieu Marbac <arXiv:2009.07662>.
Examples
set.seed(123)
# Data generation
ech <- rMNAR(n=100, K=2, d=4, delta=2, gamma=2)
# Clustering
res <- MNARcluster(ech$x, K=2)
# Confusion matrix between the estimated and the true partiion
table(res$zhat, ech$z)