Kolmogorov-Smirnov test for matrix normality {MN} | R Documentation |
Kolmogorov-Smirnov test for matrix normality
Description
Kolmogorov-Smirnov test for matrix normality
Usage
ddkstest(X, M, U, V, alpha = 0.05)
Arguments
X |
A list with k elements, k matrices of dimension |
M |
The mean matrix of the distribution, a numerical matrix of dimensions |
U |
The covariance matrix associated with the rows, a numerical matrix of dimensions |
V |
The covariance matrix associated with the columns, a numerical matrix of dimensions |
alpha |
The significance level for the test, set by default equal to 0.05. |
Details
The Kolmogorov-Smirnov test for matrix normality is performed. See Pocuca (2019) for more details.
Value
A message. If the Kronecker product covariance structure is not present, the message reads "Reject" and "Not reject otherwise".
Author(s)
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.
References
Pocuca N., Gallaugher M. P., Clark K. M. & McNicholas P. D. (2019). Assessing and Visualizing Matrix Variate Normality. arXiv:1910.02859.
See Also
Examples
M <- as.matrix(iris[1:8, 1:4])
U <- cov( matrix( rnorm(100 * 8), ncol = 8 ) )
V <- cov( iris[1:50, 1:4] )
X <- rmn(200, M, U, V)
ddkstest(X, M, U, V)