Lapprox {MMOC} | R Documentation |
Compute a rank k
approximation of a graph Laplacian
Description
This function calculates the rank-k
approximation of a graph Laplacian (or any symmetric matrix). This function performs eigen decomposition on the given matrix L
and reconstructs it using only the LAST k
eigenvectors and eigenvalues.
Usage
Lapprox(LapList, k, laplacian = c("shift", "Ng", "sym", "rw"), plots = TRUE)
Arguments
LapList |
A list of Laplacian matrices |
k |
A vector indicating how many eigenvectors to take from each Laplacian, i.e., the number of clusters in each view |
laplacian |
One of |
plots |
Whether or not to plot the eigenvalues from the rank approximated Laplacians |
Value
An n\times
n matrix
Examples
## Generating data with 2 and 3 distinct clusters
## Note that 'clustStruct' returns a list
n=120; k <- c(2,3)
set.seed(23)
dd <- clustStruct(n=n, p=30, k=k, noiseDat='random')
## Laplacians
L_list <- lapply(dd, kernelLaplacian, kernel="Spectrum",
laplacian='shift', plots=FALSE, verbose=FALSE)
trueGroups(n,k)
La <- Lapprox(L_list, k=k, plots=FALSE)
kmeans(La$vectors[,1:4], centers=4)
[Package MMOC version 0.1.1.0 Index]