ParEst {MMDai} | R Documentation |
Estimate theta and psi in multinomial mixture model
Description
This function is used to estimate theta and psi in multinomial mixture model given the number of components k.
Usage
ParEst(data, d, k, TT = 1000)
Arguments
data |
- data in matrix formation with n rows and p columns |
d |
- number of categories for each variable |
k |
- number of components |
TT |
- number of iterations in Gibbs sampler, default value is 1000. T should be an even number for 'burn-in'. |
Value
theta - vector of probability for each component
psi - specific probability for each variable in each component
Examples
# dimension parameters
n<-200; p<-5; d<-rep(2,p);
# generate complete data
Complete<-GenerateData(n, p, d, k = 3)
# mask percentage of data at MCAR
Incomplete<-Complete
Incomplete[sample(1:n*p,0.2*n*p,replace = FALSE)]<-NA
# k identify
K<-kIdentifier(data = Incomplete, d, TT = 10)
Par<-ParEst(data = Incomplete, d, k = K$k_est, TT = 10)
[Package MMDai version 2.0.0 Index]