BiCopConfIntMMD {MMDCopula} | R Documentation |
Confidence intervals for the estimated parameter of a bivariate parametric copula using MMD estimation
Description
Confidence intervals for the estimated parameter of a bivariate parametric copula using MMD estimation
Usage
BiCopConfIntMMD(
x1,
x2,
family,
nResampling = 100,
subsamplingSize = length(x1),
corrSubSampling = TRUE,
level = 0.95,
...
)
Arguments
x1 |
vector of observations of the first coordinate. |
x2 |
vector of observations of the second coordinate. |
family |
parametric family of copulas. Supported families are:
|
nResampling |
number of resampling times. |
subsamplingSize |
size of the subsample.
By default it is |
corrSubSampling |
this parameter is only used for subsampling-based confidence intervals.
If |
level |
the nominal confidence level. |
... |
other parameters to be given to |
Value
a list with the confidence intervals CI.Tau for Kendall's tau and CI.Par for the corresponding parameter.
References
Alquier, P., Chérief-Abdellatif, B.-E., Derumigny, A., and Fermanian, J.D. (2022). Estimation of copulas via Maximum Mean Discrepancy. Journal of the American Statistical Association, doi:10.1080/01621459.2021.2024836.
Kojadinovic I., and Stemikovskaya, K. (2019) Subsampling (weighted smooth) empirical copula processes. Journal of Multivariate Analysis, 173, 704-723, doi:10.1016/j.jmva.2019.05.007.
Examples
data = VineCopula::BiCopSim(N = 50, family = 1, par = 0.3)
result = BiCopConfIntMMD(x1 = data[,1], x2 = data[,2], family = 1,
nResampling = 2, subsamplingSize = 10, niter = 10)
data_ = VineCopula::BiCopSim(N = 1000, family = 1, par = 0.3)
result_ = BiCopConfIntMMD(x1 = data_[,1], x2 = data_[,2], family = 1)
result_$CI.Tau
result_$CI.Par