MLmetrics-package | MLmetrics: Machine Learning Evaluation Metrics |
Accuracy | Accuracy |
Area_Under_Curve | Calculate the Area Under the Curve |
AUC | Area Under the Receiver Operating Characteristic Curve (ROC AUC) |
ConfusionMatrix | Confusion Matrix |
F1_Score | F1 Score |
FBeta_Score | F-Beta Score |
GainAUC | Area Under the Gain Chart |
Gini | Gini Coefficient |
KS_Stat | Kolmogorov-Smirnov Statistic |
LiftAUC | Area Under the Lift Chart |
LogLoss | Log loss / Cross-Entropy Loss |
MAE | Mean Absolute Error Loss |
MAPE | Mean Absolute Percentage Error Loss |
MedianAE | Median Absolute Error Loss |
MedianAPE | Median Absolute Percentage Error Loss |
MLmetrics | MLmetrics: Machine Learning Evaluation Metrics |
MSE | Mean Square Error Loss |
MultiLogLoss | Multi Class Log Loss |
NormalizedGini | Normalized Gini Coefficient |
Poisson_LogLoss | Poisson Log loss |
PRAUC | Area Under the Precision-Recall Curve (PR AUC) |
Precision | Precision |
R2_Score | R-Squared (Coefficient of Determination) Regression Score |
RAE | Relative Absolute Error Loss |
Recall | Recall |
RMSE | Root Mean Square Error Loss |
RMSLE | Root Mean Squared Logarithmic Error Loss |
RMSPE | Root Mean Square Percentage Error Loss |
RRSE | Root Relative Squared Error Loss |
Sensitivity | Sensitivity |
Specificity | Specificity |
ZeroOneLoss | Normalized Zero-One Loss (Classification Error Loss) |