Machine Learning Evaluation Metrics


[Up] [Top]

Documentation for package ‘MLmetrics’ version 1.1.3

Help Pages

MLmetrics-package MLmetrics: Machine Learning Evaluation Metrics
Accuracy Accuracy
Area_Under_Curve Calculate the Area Under the Curve
AUC Area Under the Receiver Operating Characteristic Curve (ROC AUC)
ConfusionMatrix Confusion Matrix
F1_Score F1 Score
FBeta_Score F-Beta Score
GainAUC Area Under the Gain Chart
Gini Gini Coefficient
KS_Stat Kolmogorov-Smirnov Statistic
LiftAUC Area Under the Lift Chart
LogLoss Log loss / Cross-Entropy Loss
MAE Mean Absolute Error Loss
MAPE Mean Absolute Percentage Error Loss
MedianAE Median Absolute Error Loss
MedianAPE Median Absolute Percentage Error Loss
MLmetrics MLmetrics: Machine Learning Evaluation Metrics
MSE Mean Square Error Loss
MultiLogLoss Multi Class Log Loss
NormalizedGini Normalized Gini Coefficient
Poisson_LogLoss Poisson Log loss
PRAUC Area Under the Precision-Recall Curve (PR AUC)
Precision Precision
R2_Score R-Squared (Coefficient of Determination) Regression Score
RAE Relative Absolute Error Loss
Recall Recall
RMSE Root Mean Square Error Loss
RMSLE Root Mean Squared Logarithmic Error Loss
RMSPE Root Mean Square Percentage Error Loss
RRSE Root Relative Squared Error Loss
Sensitivity Sensitivity
Specificity Specificity
ZeroOneLoss Normalized Zero-One Loss (Classification Error Loss)