| MLVSBM {MLVSBM} | R Documentation |
R6Class for multilevel object
Description
Store all simulation parameters and list of fittedmodels. Methods for global inference and model selection are included.
Active bindings
nb_nodesList of the umber of nodes for each levels
simulation_parametersList of parameters of the MLVSBM
affiliation_matrixAccess the affiliation matrix
adjacency_matrixAccess the list of adjacency_matrix
membershipsAccess the list of the clusterings
fittedmodelsGet the list of selected fitted FitMLVSBM objects
ICLA summary table of selected fitted models and ICL model selection criterion
ICL_sbmSummary table of ICL by levels
tmp_fittedmodelsA list of all fitted FitMLVSBM objects
fittedmodels_sbmA list of selected fitted FitSBM objects of each levels
max_clustersAccess the list of maximum model size
min_clustersAccess the list of minimum model size
directedAccess the list of boolean for levels direction
directedAccess the list of the distribution used for each levels
Methods
Public methods
Method estimate_level()
Usage
MLVSBM$estimate_level( level = "lower", Q_min = 1, Q_max = 10, Z = NULL, init = "hierarchical", depth = 1, nb_cores = NULL )
Method estimate_sbm_neighbours()
Usage
MLVSBM$estimate_sbm_neighbours( level = "lower", Q = NULL, Q_min = 1, Q_max = 10, fit = NULL, nb_cores = NULL, init = NULL )
Method estimate_sbm_from_neighbours()
Usage
MLVSBM$estimate_sbm_from_neighbours( level = "lower", Q = NULL, fits = NULL, nb_cores = NULL )
Method estimate_sbm()
Usage
MLVSBM$estimate_sbm(level = "lower", Q = Q, Z = NULL, init = "hierarchical")
Method mcestimate()
Usage
MLVSBM$mcestimate(Q, Z = NULL, init = "hierarchical", independent = FALSE)
Method estimate_from_neighbours()
Usage
MLVSBM$estimate_from_neighbours( Q, models = NULL, independent = FALSE, nb_cores = nb_cores )
Method estimate_neighbours()
Usage
MLVSBM$estimate_neighbours( Q, fit = NULL, independent = independent, nb_cores = NULL )
Method merge_split_membership()
Usage
MLVSBM$merge_split_membership( fitted = private$fitted[[length(private$fitted)]] )
Method mc_ms_estimate()
Usage
MLVSBM$mc_ms_estimate(Z = NA, independent = FALSE, nb_cores = NULL)
Method estimate_one()
Usage
MLVSBM$estimate_one( Q, Z = NULL, independent = FALSE, init = "hierarchical", nb_cores = NULL )
Method estimate_all_bm()
Usage
MLVSBM$estimate_all_bm( Q = NULL, Z = NULL, independent = FALSE, clear = TRUE, nb_cores = NULL )
Method new()
Constructor for R6 class MLVSBM
Usage
MLVSBM$new(
n = NULL,
X = NULL,
A = NULL,
Z = NULL,
directed = NULL,
sim_param = NULL,
distribution = list("bernoulli", "bernoulli")
)Arguments
nA list of size 2, the number of nodes
XA list of 2 adjacency matrices
AThe affiliation matrix
ZA list of 2 vectors, the blocks membership
directedA list of 2 booleans
sim_paramA list of MLVSBM parameters for simulating networks
distributionThe distributions of the interactions ("bernoulli")
Returns
A MLVSBM object
Method findmodel()
Find a fitted model of a given size
Usage
MLVSBM$findmodel(nb_clusters = NA, fit = NA)
Arguments
nb_clustersA list of the size of the model
fitif fit = "best" return the best model according to the ICL
Returns
A FitMLVSBM object
Method clearmodels()
delete all fitted models
Usage
MLVSBM$clearmodels()
Method addmodel()
Added a FitMLVSBM object to the list of fitted model
Usage
MLVSBM$addmodel(fit)
Arguments
fitThe FitMLVSBM object to be added
Method simulate()
Usage
MLVSBM$simulate()
Method clone()
The objects of this class are cloneable with this method.
Usage
MLVSBM$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.